Sensitivity Analysis for Linear Estimators

Abstract

We propose a novel sensitivity analysis framework for linear estimators with identification failures that can be viewed as seeing the wrong outcome distribution. Our approach measures the degree of identification failure through the change in measure between the observed distribution and a hypothetical target distribution that would identify the causal parameter of interest. The framework yields a sensitivity analysis that generalizes existing bounds for Average Potential Outcome (APO), Regression Discontinuity (RD), and instrumental variables (IV) exclusion failure designs. Our partial identification results extend results from the APO context to allow even unbounded likelihood ratios. Our proposed sensitivity analysis consistently estimates sharp bounds under plausible conditions and estimates valid bounds under mild conditions. We find that our method performs well in simulations even when targeting a discontinuous and nearly infinite bound.

Work in progress.

Jacob Dorn
Jacob Dorn
Postdoctoral Researcher

Jacob Dorn is a postdoctoral researcher at the Leonard Davis Institute of Health Economics at the University of Pennsylvania with interests in the industrial organization of health markets and econometrics.

Related