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Abstract

Many markets, including American healthcare markets, feature bilateral bargaining

to determine contracts that remain in place for multiple years. Researchers studying

these markets generally assume contracts are short-lived. In the United States, hospitals

and commercial insurers calculate prices as long-lived multiples of quantities used as

benchmarks, such as hospital-set list prices and government-set Medicare payments.

This study uses a unique panel dataset on hospital–insurer contracts to study how

persistent increases to Medicare reimbursement would impact negotiated payments

on behalf of the commercially insured. I extend standard vertical market models to

accommodate forward-looking bargaining over multiperiod contracts, and I prove the

extension uniquely controls the growth of relevant bargaining states. I apply the model

to consider a one-percentage-point annual increase in Medicare payments. The model

allows forward-looking negotiators to offset future Medicare-driven price increases by

reducing starting prices. After nine years, I estimate that spending on behalf of the

commercially insured would increase by 1.319%. Extrapolated nationally, the change

would increase 2015 spending by $4.98 billion. In contrast, a myopic model lacking

forward-looking offsets would overestimate the effect of the Medicare reimbursement

reform by $2.35 billion.
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1 Introduction

Many vertical markets feature multiyear contracts reached through bilateral bargaining.

For example, telecommunications providers agree to pay cable networks based on intricate

contracts that can last up to a decade (Marcelo, 2021). Manufacturers employ sophisticated

price indexing schemes to maintain supplier contracts over multiple years (Joskow, 1987). In

the context I consider, commercial health insurers in the United States typically use external

benchmarks, such as hospital-set list prices and government-set Medicare payments, to set

prices with hospitals under contracts that last for multiple years (Abbey, 2012, Cooper et al.,

2019). The resulting payments under these contracts exceed $400 billion annually.

This paper develops and estimates a model of vertical market bargaining over multiyear

contracts. The model is applied to commercially insured hospital care in the United States,

investigating how changes in the growth rate of benchmark prices would affect spending

on behalf of commercially insured patients. The work focuses on the effect of the proposed

changes on private insurer payments negotiated as fixed multiples of benchmark prices.

The proposed model enables negotiators to look forward and offset future benchmark price

increases by reducing their associated multiple and starting prices. The empirical analysis

utilizes a novel panel dataset summarizing West Virginia’s hospital–insurer contracts from

2006 to 2015, which I describe in Dorn (2024).

The primary counterfactual considers a change in government-set Medicare reimburse-

ment to track reported hospital cost growth. The counterfactual is implemented as a one-

percentage-point increase in annual payments for the benchmark prices used for 47% of West

Virginia private insurer spending. I find that persistent Medicare payment increases would

have real effects on the payments negotiated by commercial insurers, even after accounting

for forward-looking offsets. After nine years, the change increases inpatient spending on be-

half of the commercially insured would extrapolate nationally to a $4.98-billion increase in

hospital spending.

This work contributes to important policy questions around Medicare reimbursement.

Medicare is a large national program that reimburses hospitals for inpatient care based on

diagnosis with local wage adjustments. Hospitals argue it is “broadly acknowledged” that

Medicare spending has failed to keep up with their costs (AHA, 2022). In the era I study,

I find that growth in Medicare payments to West Virginia hospitals trailed the growth in

hospital reported costs by approximately one percentage point annually.

The vertical market bargaining literature generally adopts a single-period-contract ap-

proach, which is unsuitable for understanding multiyear contract responses. In vertical mar-

kets, downstream retailers like insurers trade with upstream suppliers like hospitals. In a
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vertical market, the gains from trade of a downstream retailer with one supplier depend on

how negotiation failure will affect the retailers payments to other suppliers under the pre-

vailing contracts. Researchers typically rely on secondary sources on contract outcomes like

payments, but these sources rarely reveal the timing of contract revision. Consequently, the

prevailing approach uses data from a short time frame and assumes a static model in which

all contracts are negotiated at the start of the bargaining game’s single period.

In such a single-period model, Medicare reimbursement levels and other benchmark prices

have no real effect because negotiators can immediately offset changes in Medicare payment

levels by revising their multiple in the opposite direction. Conversely, a myopic bargaining

model would overestimate Medicare reimbursement reform effects if negotiators care about

multiple periods. Forward-looking negotiators that target a time-weighted average of pay-

ments respond to anticipated future price increases by reducing starting prices.

Certain methodological challenges, such as state space growth, emerge when forward-

looking bargainers negotiate multiperiod contracts in vertical markets. To illustrate the state

space growth, consider a hospital and insurer that negotiate a two-year contract today. When

bargaining, the negotiators assess the value of agreement relative to the value of disagreement

at the current moment. Suppose that at any time the two parties fail to reach an agreement,

they will quickly return to the bargaining table to minimize their loss. In a vertical market,

the outcome of the two-year contract will affect how each party bargains with other firms

in the future while the contract remains in place. As the parties repeatedly disagree, other

negotiations draw nearer and then are resolved, introducing a new bargaining state for each

return to the bargaining table. The single-period-contract approach manages this challenge

by ensuring that future contracts are simultaneously formed in every future period, regardless

of the outcome of any current negotiation. However, the single-period-contract approach

would mechanically rule out the mechanism of interest, the role of benchmark price dynamics

on commercial insurer prices negotiated as multiyear fixed multiples of those benchmark

prices.

Methodologically, this work proposes a dynamic vertical market bargaining model, en-

abling negotiation of multiperiod contracts with uncertainty over future profits and bench-

mark prices. The proposed model builds on the Ho and Lee (2017) static hospital–insurer

Nash-in-Nash bargaining model, extending it to multiyear agreements. In static Nash-in-

Nash bargaining, contracts are chosen to split gains from trade relative to not contracting

for the game’s single period. In the proposed dynamic model, contracts are chosen to split

gains from trade relative to not contracting for an instant and then returning to the bar-

gaining table. Such a model involves an infinite number of bargaining states. I show that

this model produces the same predictions as if the players negotiate relative to an impasse
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point (Binmore et al., 1989). Under impasse, the firms persistently attempt to bargain and

at every instance all players expect the pair to succeed, but each period ultimately ends in

disagreement.

This dynamic extension corresponds to the Kalai (1977) proportional bargaining solution,

which aligns with laboratory behavior and uniquely controls the number of relevant bargain-

ing states. In principle, forward-looking negotiators time must consider how the changing

path of internalized spillovers would affect their negotiations after every period of impasse.

As periods become short, the number of bargaining states is unbounded. Under Kalai pro-

portional bargaining, gains from trade can be defined relative to a specific impasse point that

involves only a small number of bargaining states — namely, the periods in which others

respond to the pair’s anticipated success. The bargaining model yields a moment for esti-

mation with uncertainty, a property that does not hold in general under Nash bargaining.

Kalai proportional and Nash bargaining differ when an important component of the effect of

the negotiated price on subsequent profit is the price’s spillovers on future negotiations. This

study’s estimates suggest that internalized spillovers in West Virginia were usually minimal.

Consequently, Kalai proportional bargaining would be a valuable approximation in my em-

pirical setting even if negotiators truly followed a more complex dynamic Nash bargaining

model. The existence, if any, of an empirically tractable representation of Nash bargaining

with important time-varying spillovers is an open direction for future work.

The key inputs to the project’s bargaining model are hospital and insurer demand func-

tions. I take a similar approach to hospital and insurer demand estimation as work like Ho

and Lee (2017) and Ghili (2022). Hospital demand depends on ex ante insurance demand

and ex post patient choices within an insurer’s network. For hospital demand, I leverage

data from Blue Cross patients, who have comprehensive network access, to predict ex post

hospital choices and the ex ante utility of a network of hospitals to a consumer before be-

coming sick. I model patients as choosing a hospital based on diagnosis, home location, and

insurer networks. Insurer demand depends on consumer willingness to pay for access to an

insurer’s hypothetical network before they become sick, which is generally correlated with

premiums. I estimate the contribution of ex ante network quality to ex ante insurer choice

using inpatient data from 2016 and leveraging Affordable Care Act (ACA) premium restric-

tions. The regulations prevented insurers from differentiating premiums within geographic

rating areas beyond a limited set of homogeneously incorporated factors. The contribution

of network quality to insurer sales conditional on premiums is identified by the correlation of

network quality with sales within rating area. Combined, these models predict how adding

or removing a hospital from an insurer’s network would affect the insurer’s sales and the

distribution of patients across hospitals and insurers.
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The estimated model of forward-looking bargaining over multiperiod contracts leverages

the estimated hospital and insurer demand functions and West Virginia’s unique contract

panel data. Unlike the standard single-period approach, I estimate bargaining parameters

using only new contracts and consider gains from trade over the multiple years a contract

can remain in place. The key parameter is the patience (or discount) rate β: the degree to

which bargainers value inflation-adjusted profits next year relative to profits this year. A

larger patience parameter β corresponds to bargainers being more patient and doing more

to offset future Medicare-driven price increases by reducing their negotiated multiple and

associated starting price. I obtain a convenient test of myopia as the null hypothesis that

β = 0. I identify β from variation in anticipated price increases and contract length.

Empirically, I find that bargainers are forward-looking and respond to future Medicare-

driven price increases. I estimate that bargainers value one dollar next year equivalently to 90

cents this year. I consider a one-percentage-point annual increase in Medicare payments that

would lead Medicare payments to roughly track hospital costs. The change is implemented

as a surprise announcement at the end of 2006 that is fully known in every subsequent

period. I estimate that this change to Medicare reimbursement would increase spending on

behalf of the commercially insured by 1.319%. Extrapolated nationally in 2015 and converted

to 2019 dollars, the effect corresponds to a $4.98-billion increase in spending. There are

important spending dynamics beyond the general increase, including years in which payments

would decrease. The two alternative models available are a myopic model and a single-period

contracting model. Under a myopic model, the estimated effect in 2015 would be too large

by $2.35 billion. Under single-period contracting, Medicare reimbursement dynamics would

have no effect.

This study also examines the impact of regulations aimed at curbing the growth of

hospital-set list prices. Hospital list prices — the standard benchmark for small and medium-

sized insurers — grew roughly three percentage points faster than costs in West Virginia. I

consider a lax regulation that would cut aggregate list price inflation to roughly two percent-

age points faster than costs. The associated regulation would reduce payments by 0.11%–

1.3% depending on the year. However, the contracts benchmarked to hospital list prices are

rarely revised. Consequently, most of the effect of the list price regulation are mechanical

effects on renewing contracts, and the forward-looking addition of the dynamic model has

only a small effect on the predicted change in spending.

This work illustrates that a multiperiod perspective is needed for dynamic questions in

vertical markets, and offers a framework for tractably adopting such a perspective in empiri-

cal work. When negotiators are forward-looking about multiperiod contracts, estimates of the

effect of Medicare reimbursement reform and stricter list price caps based on single-period-
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contract models have predictable biases. However, forward-looking negotiation in vertical

markets can easily grow empirically intractable. This work proposes an internally consistent

model for such dynamic bargaining that is uniquely tractable. The finding that forward-

looking offsets are an important response to hypothetical Medicare reimbursement reform

underscores the broader importance of adopting a dynamic perspective to understand the

consequences of dynamic changes in vertical markets.

The remainder of this work is as follows. The remainder of Section 1 discusses key related

work. Section 2 uses a toy model to illustrate that forward-looking bargainers negotiating a

fixed multiple of an externally-set benchmark price respond to future benchmark price in-

creases by reducing starting prices. Section 3 proposes this work’s empirical model. Section 4

briefly summarizes the data I use from West Virginia, outlines how I estimate the empirical

model with the data at hand, and presents the estimated parameters. Section 5 presents the

estimated counterfactual effects of changes in benchmark price dynamics on payments to

hospitals made on behalf of the commercially insured for inpatient care. Section 6 concludes

and discusses some implications of the work.

Related Literature

My work on dynamic vertical market bargaining between hospitals and insurers touches

on literature from many fields. I briefly summarize the paper’s key contributions here and

discuss other related work in Appendix B.

This work extends the existing vertical market bargaining literature to enable bilateral

bargaining to determine contracts that can begin at different times for different pairs. Lee

et al. (2021) and Yürükoğlu (2022) offer recent summaries on vertical market contracting.

The literature generally models bargaining over static contracts that remain in place for

the game’s single period. A smaller body of literature models dynamic period-by-period

contracting, in which current networks can affect future contract formation but contracts

remain in place for only a single period (Lee and Fong, 2013, Liu, 2021, Tiew, 2022, Deng

et al., 2022, 2023). I extend that literature by proposing a tractable vertical market bargaining

model that enables multiyear contracts that are formed at different times.

The workhorse approach to empirical vertical market bargaining is the Nash-in-Nash bar-

gaining model (Collard-Wexler et al., 2019, Bagwell et al., 2020). In the Nash-in-Nash model,

contracts result from Nash bargaining over gains from trade that are calculated holding si-

multaneous decisions fixed (Nash equilibrium). Recent work argues the Nash equilibrium

assumption can do a poor job of replicating true responses to disagreement (Ho and Lee,

2019, Yu and Waehrer, 2019, Froeb et al., 2021, Liebman, 2022, Ghili, 2022). Empirical
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Nash-in-Nash bargaining models have a zero-sum structure in many (Lee and Fong, 2013,

Ho and Lee, 2017, Crawford et al., 2018, Collard-Wexler et al., 2019) but not all (Craw-

ford and Yurukoglu, 2012, Grennan, 2013, Gowrisankaran et al., 2015) applications. Under

zero-sum bargaining, every dollar in added profit for one firm corresponds to one dollar

in lost profit for their partner. Such zero-sum games are called Transferable Utility (TU)

games in the coalitional bargaining literature. I use the Kalai proportional bargaining so-

lution, which is the same as Nash bargaining in the standard TU case and which I show

adapts uniquely well to dynamic bargaining settings. Another popular bargaining solution,

the Kalai and Smorodinsky (1975) bargaining solution, does not offer the same advantages.

Methodologically, this work builds on Ho and Lee (2017)’s static Nash-in-Nash bargaining

model, enabling contracts to overlap and remain in place for multiple periods. Similar ideas

extend to other models of bargaining in vertical markets.

Much of the dynamic bargaining literature is theoretical (Malcomson and MacLeod,

1989, MacLeod and Malcomson, 1993, Levin, 2003, Miller and Watson, 2013, Watson et al.,

2020, Dutta, 2021). An important part of the theoretical dynamic bargaining literature with

empirical applications is the literature proposing dynamic underpinnings of static bargaining

solutions (Binmore et al., 1986, Stole and Zwiebel, 1996, Coles and Muthoo, 2003, Brügemann

et al., 2018, Collard-Wexler et al., 2019, Maskin et al., 2021, Dutta, 2022). A small body

of theoretical literature considers stylized dynamic bargaining with overlapping contracts in

triangular vertical markets (De Fraja, 1993, Bárcena-Ruiz and Casado-Izaga, 2008, Do and

Miklós-Thal, 2022).

Empirical dynamic bargaining models often focus on negotiations between two parties in

isolation (Roth et al., 1988, Rica and Espinosa, 1997, Keniston, 2011, Backus et al., 2020).

Vertical market contracts have been considered explicit or implicit trade secrets (Reinhardt,

2006, Gudiksen et al., 2019), precluding researchers from observing contract dynamics. This

may change in coming years due to regulations requiring price transparency in healthcare.

An important setting that models dynamic bargaining with interactions between contracts

formed through staggered bargaining is the search-on-the-job literature, which models over-

lapping contracts with spillovers through market prices (Diamond and Maskin, 1979, Shimer,

2006). In the empirical search-on-the-job literature, bargaining is typically TU (Cahuc et al.,

2006, Gottfries, 2022, Bilal et al., 2022), so that the Nash and Kalai proportional bargaining

solutions would have the same predictions. There is also a literature on staggered non-TU

bargaining in which overlapping contracts interact through market states and can affect

future bargains in a stylized process (Gertler et al., 2008, Gertler and Trigari, 2009). My

setting differs from the prior empirical dynamic bargaining literature because West Virginia

contract spillovers depend on consumer substitution between individual firms.
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This paper contributes to the empirical literature on vertical market contracting beyond

West Virginia hospitals. This project sheds light on the practice of long-term contracting,

which has implications for the literature on bargaining in hospital markets — as examined

in work like Gowrisankaran et al. (2015), Ho and Lee (2017), Ghili (2022), and Prager and

Tilipman (2022) — and may hold in other vertical markets, such as retail supply chains (Dra-

ganska et al., 2010, Baudendistel, 2023), medical device supply (Grennan, 2013, New York

State Procurement, 2014, Grennan and Swanson, 2022), and content distribution (Crawford

et al., 2018, Marcelo, 2021). This work exploits public record contract data and complements

Cooper et al. (2019)’s analysis of five years of claims data from three major national insur-

ers. Their research measures service-level prices and forms a crucial foundation to my work.

Weber et al. (2019) complement Cooper et al. by describing prices using claims data that

encompasses both large and small insurers in Colorado.

2 Illustration That Forward-Looking Bargainers Offset

Benchmark Price Increases

In this section, I present a toy model to illustrate why contract prices negotiated as

fixed multiples of changing benchmark prices require a dynamic perspective. Bargainers that

consider only one contract period at a time respond to their benchmark’s current price

level but do not respond to anticipated future prices. Similar results have been found in

in inflation settings settings in which prices are chosen unilaterally rather than through

bilateral bargaining (Taylor, 1980, Calvo, 1983, Abbott, 1995). The effects of benchmark

price increases can be subtle in vertical markets with bargaining.

A monopolist insurer (MCO, for managed care organization) would like a monopolist

hospital (HOSP) to be in its network. For every year in which HOSP and MCO have a

contract in place, MCO will sell an additional $20 million of insurance. HOSP must agree to

a contract and associated payment to be in MCO’s network. There are no costs. I consider

the years 2013 and 2014.

The firms bargain to split gains from trade equally. The simplest way to split gains from

trade equally would be for MCO to pay HOSP $10 million per year in both 2013 and 2014.

Under such a contract, HOSP gains a $10-million payment each year, and MCO gains $10
million in added profit after its payment to HOSP.

A payment is negotiated as a fixed multiple α to be applied to an exogenous benchmark

price. In practice, a hospital like HOSP would provide thousands of services and rely on a
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benchmark to price every instance of care.1 In this toy model, HOSP will provide 1,000 units

of care for MCO patients if HOSP is in-network. If the benchmark price is $5,000, then a

multiple of α = 2.0 will lead to a payment of 2.0 × $5, 000 per unit of care for each of the

1,000 units of care and lead to an overall payment of $10 million. I will consider negotiations

under three scenarios: a single-period-contract model in which contracts are negotiated at

the start of each year and remain in place for one year, a myopic model in which contracts

last two years but bargainers only care about the first year of profits, and a forward-looking

model in which contracts last two years and bargainers care about both years of profits.

In the single-period-contract scenario, the benchmark price is irrelevant. Suppose HOSP

and MCO negotiate every year and the first year’s benchmark price is $5,000. Then the

two can agree to a multiple of α2013 = 2.0 and reach a payment of $10 million in 2013.

If the second year’s benchmark price is also $5,000, they can choose the same multiple of

α2014 = 2.0 to reach a payment of $10 million. If instead the second year’s benchmark price

is $20,000 per unit of care, firms bargaining over single-period contracts can negotiate a

new multiple of α2014 = 0.5 and reach the same $10-million payment. Things become more

complicated if the contract will remain in place for multiple years.

In the myopic scenario, bargainers tautologically do not respond to future benchmark

price increases. Under myopic bargaining, contracts can last for arbitrarily many periods,

but bargainers care only about the first period of the contract. Suppose MCO and HOSP

must agree in 2013 on a multiple α to apply in both 2013 and 2014. The empirical model will

incorporate uncertainty in benchmark prices, but for simplicity in the myopic and forward-

looking scenarios, the benchmark price will be the known values of $5,000 in 2013 and $20,000
in 2014. Myopic bargainers care only about 2013 profits and generate a 2013 payment of $10
million with a multiple of α = 2.0. The 2014 payment is $40 million. MCO could become

predictably insolvent in 2014 if the bargainers are myopic in 2013.

In the forward-looking scenario, bargainers offset future benchmark price increases by

reducing starting prices. Suppose the bargainers have a discount factor of β = 1/2 and value

2014 half as much as 2013. The net present value (NPV) gains from trade are $20 million +

0.5 × $20 million = $30 million. The firms can split the net present value gains equally with

a multiple of α = 1.0. The forward-looking contract pays only $5 million in the first year

and $20 million in the second year, offsetting future benchmark price increases by reducing

starting prices.

Similar results that forward-looking agents target a time-weighted average of payments

have been found in the context of price setting with inflation expectations (Taylor, 1980,

1I use the term benchmark to refer to an externally observable quantity used for calculating payments
under a contract. Benchmarks have other uses in bargaining (Grennan and Swanson, 2020).
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Calvo, 1983) and pharmaceutical price caps (Abbott, 1995, Ridley and Zhang, 2017). Here,

prices are bargained rather than set and have spillovers that depend on consumer substitution

patterns. As a result, the response to anticipated benchmark prices requires new tools to

study in my setting. I illustrate the subtleties introduced by vertical market bargaining in

Appendix D.1. In that toy model, benchmark price dynamics can increase insurer spending

or have no net present value effect in equilibrium depending on when contracts are bargained.

In the next section, I present my empirical model. The model will allow bilateral bar-

gaining over multi-year contracts with multiple asymmetric hospitals, multiple asymmetric

insurers, and potential uncertainty in future conditions.

3 A Model of Dynamic Bargaining between Hospitals

and Insurers

I propose a novel empirical model of repeated dynamic bargaining between many hospitals

and many insurers. The model yields a moment for negotiated payments that only relies on

decisions made at times that contracts are reached in equilibrium, even if bargaining under

impasse would be attempted arbitrarily quickly. The associated moment nests the static

Nash-in-Nash model’s bargaining moment as the special case of myopia. The model enables

vertical market firms to bilaterally bargain over multiperiod contracts that have foreseeable

spillovers on future negotiations between other entities conducted while the contract remains

in place.

All hospitals and insurers are risk neutral, share rational expectations towards the future,

play Markov strategies, and share an intertemporal patience rate β ∈ [0, 1). I abuse notation:

in this section, I use β to refer to a generic single-period discounting rate, but in my empirical

results, I use β to refer to an annual discounting rate. Bargaining over new contracts is always

conducted through asymmetric Kalai proportional bargaining, wherein each hospital–insurer

pair ij has fixed insurer bargaining weight τij ∈ (0, 1). (I discuss the Kalai proportional

bargaining solution at a high level in Section 3.2 and in further detail in Appendix D.2.)

There is a negotiation cost to incentivize forming multiperiod contracts.

The model accommodates uncertainty. Future demand functions are uncertain, so that

hospitals and insurers cannot efficiently contract over multiple periods at a time. The sides

instead adapt to future conditions by reaching prices as a fixed multiple α applied to a

benchmark price while the contract remains in place. The benchmark prices can be uncertain

and correlated with future realizations of demand. Shared rational expectations will be a key

driver of the model’s empirical tractability. Bargaining models with asymmetric information
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or biased expectations are outside the scope of this work.

The game’s timing in each period t is as follows:

1. Information is revealed. Hospital and insurer demand functions DH and DM are real-

ized and information about future states is revealed to all hospitals and insurers. If t

corresponds to the first period of a calendar year, then benchmark prices are set for

the year.

2. Auto-renew decisions are made. If t corresponds to the first period of a calendar year,

then firms play a renewal strategy with regard to which of their auto-renew contracts

they will give notice they will not allow to renew.

3. Contracts are bargained and premiums are set. New contracts (expiration, choice of

benchmark, and benchmark multiple) are simultaneously formed through Kalai pro-

portional bargaining. If t corresponds to the first period of a calendar year, then at the

same time, premiums are set through Nash-Bertrand competition.

4. Flow profits are formed. Flow profits are formed through the following process.

(a) Consumers purchase insurance based on network quality and premiums.

(b) Consumers independently can become sick with age-dependent probability.

(c) Flow profits result, as specified in Equation (1) below.

I next discuss the model in further detail.

3.1 Information Is Revealed and Auto-Renew Decisions Are Made

In Stage 1, demand functions are revealed and benchmark prices are set. The insurer —

also known as MCO — demand function DM
nt (G, ϕ) corresponds to the units of insurance

sold by MCO n in year t with realized networks G and premiums ϕ. The hospital demand

function DH
hnt(G, ϕ) corresponds to the units of care provided by hospital h for patients with

insurer n in year t with those networks and premiums. I write benchmark B’s price level

in period t as pBht > 0. I adapt the notation for the two stylized benchmarks from Cooper

et al. (2019). B = P corresponds to the Medicare-based prospective benchmark and B = C

corresponds to the list-price-based chargemaster benchmark.

I treat benchmark prices increases, including endogenous hospital list-price setting, as

determined exogenously. That assumption is fairly innocuous for estimation. Medicare prices

are set nationally and plausibly exogenous. While hospital list prices are set endogenously,

the list prices are set in response to a complex set of incentives, including West Virginia’s list
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price capping system and many small list-price-benchmarked contracts, that is unlikely to be

affected substantially by any single contract. My two counterfactuals, changes to Medicare

reimbursement and stronger restrictions to hospital-set list prices, should have a predictable

effect on the endogenous choice of list price. The model could accommodate an endogenous

list price response to an individual contract negotiation, at the cost of modeling the effect

of the contract on subsequent list prices and auto-renew decisions. Such a model would add

substantial complexity, depart from the literature, and fail to speak more persuasively to my

counterfactuals of interest.

In Stage 2, auto-renew decisions are made. Most list-price-benchmarked contracts are

also auto-renew contracts (Dorn, 2024): contracts that carry a formal commitment for only

one year but that automatically renew until a side gives at least 30 days’ notice it will not

allow the contract to renew. I allow the auto-renew process to be endogenous but assume the

renewal decisions would be the same in counterfactuals. I model the auto-renew decisions as

being made at the start of the year. Staggered auto-renew decisions would fit in the model

at the cost of adding notation for decision time.

I abstract from many details by viewing prices as per abstract unit of care. That modeling

choice is standard in the literature. I discuss some key limitations in Section 3.4 and discuss

details of those and other limitations in Appendix C.4.

3.2 New Contracts Are Bargained

In Stage 3, hospitals and insurers bargain with regards to a contract’s expiration, bench-

mark, and the multiple to apply to the benchmark while the contract remains in place. Future

benchmark prices can be unknown and only partially predictable. Disagreement corresponds

to reaching the null contract.

Without loss of generality, I view the firms as negotiating an initial price rather than a

contract multiple. Initial benchmark prices are known before negotiation. It is equivalent to

negotiate the initial multiple αht0 to apply to a benchmark price that starts at the known

price pBht0 or to negotiate the initial price pht0 = αht0p
B
ht0

directly.

The contract formed from one bargain is described as a benchmark b, maximum remaining

length including the current period ℓ (where ℓ = ∞ for auto-renew), and negotiated first

period price per unit of care p. Disagreement corresponds to reaching the null contract

(b = N , ℓ = 0, p = 0). I assume that subgame contracts are not randomized for convenience.

The bargaining states for hospital i and insurer j considering a contract in period t0

are the current demand functions {DM
jt0
} and {DH

hnt0
}; the current benchmark prices {pBht0};

the equilibrium contract states in the bargaining subgame Ct0 = ((bhnt0 , ℓhnt0 , phnt0))hn; and
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symmetric information It0 about the distribution of future states as a function of Ct0 . The

remaining history of the game does not enter bargaining under the maintained assumption

of Markov strategies. The bargaining states generate recursive value functions of realized

contracts Ct of the form

V (Ct, St) = π(Ct, St) + βE[V (Ct+1, St+1) | St],

wherein St is the realization of bargaining states at the time of negotiation in period t

and the flow profits π are defined in Equation (1) below. The gains from trade for realized

contracts Ct are defined (with future negotiation responses left implicit) as GFTijt(Ct, St) =

V (Ct, St)− V (Ct/ij, St), where Ct/ij replaces the ij contract of Ct with the null contract.

I model dynamic bargaining through Kalai proportional bargaining rather than the os-

tensibly more-usual Nash bargaining. Nash bargaining has become the dominant tool in

fields like labor economics (Haake et al., 2023) and industrial organization (Lee et al., 2021).

When bargaining includes prices with a differentiable effect on profits, Nash bargaining splits

gains from trade as
GFTM

ijt(Ct)

GFTH
ijt(Ct)

=
τij

1−τij

−∂GFTM (Ct)
∂pijt

∂GFTH (Ct)
∂pijt

, where τij is insurer j’s bargaining weight

when negotiating with hospital i. Kalai proportional bargaining splits gains from trade as
GFTM

ijt(Ct)

GFTH
ijt(Ct)

=
τij

1−τij
. The two differ based on whether the split of gains from trade incorporates

the ratio of marginal values of prices
−∂GFTM (Ct)

∂pijt

∂GFTH (Ct)
∂pijt

. (Insurer bargaining weights of τij = 0 or

τij = 1, corresponding to take-it-or-leave-it offers, have the same interpretation under both

solutions provided one side strictly prefers higher prices and the other side strictly prefers

lower prices.)

Dynamic Nash bargaining would introduce bargaining state space growth. Realized dis-

agreement is rare and painful. As a result, I assume in Assumption 2 below that if i and

j disagree in t0, they return to the bargaining table in good faith in period t0 + 1 with

a new relevant bargaining state. The t0 + 1 bargain is recursively negotiated relative to a

t0 + 2 bargain with yet another bargaining state. If the period t0 + 1 contract will expire

later than the equilibrium contract, then each disagreement will permanently change how

other pairs negotiate in the future. The state space growth is unbounded if bargaining is

microfounded as a limit of instantaneous alternating offers. The alternating offers limit is a

differential equation unless the ij Pareto frontier is homothetic in time (Coles and Muthoo,

2003). Pareto frontiers are not homothetic in this vertical market with overlapping contracts:

a three-year ij contract negotiated today will have internalized spillovers on how i and j bar-

gain with other firms while the contract remains in place, and the relevant spillovers will

change if i and j disagree today and reach a contract in the future. As a result, a dynamic
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Nash bargaining model would only retain the tractable single-period-contract form under

heroic assumptions. I find that the resulting violations of homotheticity from internalized

spillovers are likely small in my setting, and as a result, dynamic Nash bargaining would

introduce a new methodological challenge with limited empirical relevance in my context.

There are three primary reasons I use the Kalai proportional bargaining solution for

empirical work on dynamic bargaining. First, the Kalai proportional solution is the only

bargaining solution that avoids requiring heroic simplifying assumptions on bargaining under

impasse to control the bargaining state space as the period length tends to zero. Second, as

I show in Theorem 1, the Kalai proportional solution produces payments that extend the

standard static Nash bargaining solution of bargaining relative to one-period disagreement

to dynamic bargaining, with uncertainty entering through expectations. Third, the Kalai

proportional solution has favorable axiomatic, intuitive, and laboratory evidence (Nydegger

and Owen, 1974, Kalai, 1977, Duffy et al., 2021, Ghili, 2022).2

I hold benchmark choice and contract length fixed rather than endogenizing those choices.

For estimation, this may fail to exploit all information in the data. For counterfactuals,

this is innocuous: my counterfactuals would be unlikely to affect benchmark choice or the

decision to form auto-renew contracts substantially, as both are well-predicted by insurer

and changing between benchmarks is associated with substantial hassle costs (Brown, 2014,

p. 22). The most substantive assumption with respect to length is that the counterfactual

Medicare reimbursement increases would not affect which Blue Cross contracts would last

for three years or five years. The most substantive assumption with respect to benchmarks is

that the counterfactual would not lead the sides to introduce negotiation over time-varying

multiples. Such multiples are not, to my knowledge, used in practice despite the substantially

disparate behavior of the two most common benchmarks. I discuss this choice in the context

of counterfactuals further in Section 5.1.

This stage also includes a simultaneous premium-setting stage which is highly stylized.

Insurers generate profit through direct insurance sales to consumers; employer-sponsored

insurance; and a self-funded (also known as self-insured) market, wherein employers pur-

chase network access and administrative services and pay for residual care. Insurance choice

typically reflects an employer’s portfolio choice and a family insurance choice within an em-

ployer’s portfolio. My limited sales data precludes separately modeling these choices and the

different markets. The model must capture insurer incentives in bargaining by summarizing

the joint employment choice, plan portfolio choice, and family insurance choice as a function

2Kalai proportional bargaining has been criticized because it is not scale invariant, which makes it difficult
to microfound (Dagan and Serrano, 1998). I provide a microfoundation based on Dutta (2012, 2022)’s
demands games with revocation costs in Appendix D.3. I compare the approaches further in Appendix
D.2.
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of counterfactual networks. The reduced-form individual choice model attempts to summa-

rize the effect of network on plan choice across many disparate insurance offerings. Further,

I measure premiums at the annual level. Premium revision throughout the year could be

incorporated with appropriate data. I estimate back-of-the-envelope downstream impacts of

prices on premiums based on calibrated premium elasticity and make the conservative choice

not to model compounding effects of new premiums on prices.

3.3 Flow Profits Are Realized

Flow profits are based on Ho and Lee (2017). Hospital i and insurer j’s flow profits in

period t are as follows:

πH
it =

∑
n∈GH

it

DH
int (Gt, ϕt) (pint − ci)− rHi Rint

πM
jt = DM

nt (Gt, ϕt) (ϕjt − ηj)−
∑
h∈GM

jt

DH
hjt (Gt, ϕt) phjt − rMj Rhjt.

(1)

In Equation (1), the quantity of care provided by hospital i for patients with insurer n in year

t is the hospital demand function DH
int evaluated at the realized networks G and premiums

ϕ; hospital i’s cost of inpatient care is ci; insurer j’s number of plans sold is the insurer

demand function DM
jt evaluated at the realized networks and premiums; and insurer j’s cost

of noninpatient care is ηj. I extend Ho and Lee profits by including negotiation costs r for

each new contract formed, where Rhnt is an indicator for hospital h and insurer n reaching

a new contract in period t.

Hospital and insurer demand reflects a process with multiple stages. Each consumer

chooses an insurance plan (or the outside option of a small insurer) based on the available

networks and premiums and their age and location. After choosing a plan, each consumer

independently either draws one diagnoses category or does not get sick. The diagnosis prob-

abilities depend on age but not county or insurance. Sick consumers become patients and

choose exactly one hospital within their insurer’s network. The number of units of care

provided depends on the hospital and diagnosis.

Gains from trade are largely driven by the effect of a hospital being added to the insurer’s

network before accounting for their negotiated payment. The flow gains from trade from

hospital i agreeing to be included in insurer j’s network in period t at an ijt price of zero
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and before accounting for negotiation costs are:

[
∆ijπ

H
it

]
= −

Hospital
cost effect︷ ︸︸ ︷
DH

ijtci +

Recapture effect︷ ︸︸ ︷∑
n∈GH

it /j

[∆ijD
H
int](pint − ci)

[
∆ijπ

M
jt

]
= [∆ijD

M
jt ](ϕjt − ηj)︸ ︷︷ ︸

Premium and enrollment effect

−
∑

h∈GM
jt /i

[∆ijD
H
hjt]phjt

︸ ︷︷ ︸
Price reinforcement effect

.
(2)

These are the flow Nash-in-Nash gains from trade. The description of terms in Equation (2)

is adapted from Ho and Lee (2017)’s Nash-in-Nash model. The hospital must pay the cost

of providing care for some of insurer j’s patients and loses profits recaptured from patients

with other insurance. The insurer gains premium revenue from added enrollees after covering

noninpatient costs. The insurer also experiences a money-saving price reinforcement effect:

the added contract typically reduces the insurer’s payments to other hospitals by diverting

enrollees.

Prices in this model have spillovers. Higher negotiated prices under other contracts phnt

generally make the hospital recapture effect more negative and the insurer price reinforcement

effect more positive. Both mechanisms have the same direction of effect: higher anticipated

prices lead to higher new prices. The precise effect depends on the consumer substitution

patterns from hospital and insurer demand.

I add a negotiation cost borne after bargaining succeeds. Real negotiations require costs

both at the stage of preparing for negotiations (Gooch, 2019, ECG, 2020, Fletcher, 2020,

Beier, 2020) and at the stage of carefully checking the terms of a potential agreement (STD

TAC and Moss, 2014, PMMC, 2019, Fletcher, 2020). I model the bargaining friction as

only the cost to validate a potential agreement. Some work includes a sunk negotiation

cost (Prager and Tilipman, 2022). In a static model, sunk negotiation costs do not enter

into payments. In a dynamic model, changes in anticipated future sunk negotiation costs

enter payments in a complex way. In addition, sunk costs can prevent firms from forming

Pareto-efficient contracts.

3.4 Caveats

I will highlight some key caveats. In hospital demand, I do not model cross-border move-

ment or historical hospital investment. This approach may miss an important component of

the market when border hospitals negotiate with insurers that have asymmetric relationships

across state lines. In insurer demand, I summarize the process of employers choosing insur-
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ance portfolios and families choosing plans within that portfolio with a marginal individual

insurance choice, which should capture the key consumer substitution patterns but not fam-

ily choice, and back out demand before 2016 based on only state-level sales, which may miss

historical regional variation. I use a stylized model of benchmarks that captures first-order

effects. I do not endogenize the contract length choice or network formation process in or-

der to focus on the price formation process. There are other potential biases introduced by

the finite horizon approach I take to estimation and by my plug-in approach to counterfac-

tual expected charges. I measure contracting by day (as reported in the contract scans) but

demand, benchmark prices, and premiums on an annual basis, and so estimate an annual

patience parameter based on a weighted average of calendar year gains from trade beginning

from the day a contract is introduced.

The limited premium data in West Virginia leads me to simplify the premium-setting

process substantially. I use only state-level premiums that do not identify age multiples,

so that insurer gains from trade will be misspecified when consumers differentially select

between insurers based on age. This would cause issues for identification of β if it leads the

model to miss important dynamics in the relative value of different patients. My estimation

routine models price negotiation at the equilibrium premiums, which misses any response

of future premium setting to current negotiated prices. The direct effect on the insurer’s

future profits through future optimized premium responses is zero by the envelope theorem,

but nondirect effects through other firm responses can be nonzero. I leave a more precise

approach to premium setting for future work with appropriate data. I discuss these and other

caveats further in Appendix C.4.

3.5 Bargained Payments

I make a few restrictions on behavior: regularity conditions and good-faith disagreement.

Those assumptions yield a closed-form bargaining moment for estimation that only relies on

modeling bargaining at discrete times.

I maintain some regularity conditions.

Assumption 1. (Regularity conditions)

In any subgame’s contract formation Stage 3, bargainers calculate expected gains from trade

taking other pairs’ simultaneous bargaining strategies as given. The gains from trade Pareto

frontier is a convex curve and expected gains from trade are split proportionally to the τij

bargaining weights in the sense τijGFTH
ijt(Ct, It)−(1−τij)GFTM

ijt(Ct, It) = 0. There are also

transversality conditions: (i) value functions are equal to the net present value of expected

profits and (ii) for t fixed and as T → ∞, the supremum of period-t net present value
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expected profits starting at any period-T subgame tends to zero uniformly.

The simultaneous bargaining assumption is the Nash-in-Nash model’s Nash equilibrium

assumption applied to my setting. The assumption allows for a firm to make a correlated

decision of what negotiations to enter, but does not allow a firm to consider changing mul-

tiple contract outcomes at the same time during negotiations. In practice, few contracts are

actually formed at the same exact time, so the content of taking simultaneous bargaining

strategies as given is likely to be minimal. Nonconvex bargaining problems introduce subtle

considerations (Shimer, 2006). Convexity is immediate if the bargainers are allowed to ran-

domize between contracts (with the bargaining moment taking expectations over contracts

that could be formed) and often holds exactly or approximately without randomization.

The proportionality assumption rules out bargaining problems in which all proportional

allocations are strictly Pareto dominated. The transversality conditions rule out perverse

contracts.

I take a stance on disagreement based on the empirical rarity of disagreement in my

setting. Only three modeled hospital–insurer pairs ever dissolve for any time. (Two of the

three seem to reflect regulatory holdup or clerical errors.) On roughly 12 reported occasions,

a contract would remain in place on a short-term basis while bargaining remained ongoing.

Firms in my model that fail to form an agreement keep bargaining in good faith, expecting

to avoid further painful exclusion.

Assumption 2. (Good-faith disagreement)

Let Gt(s),t+1:∞ be the function that maps histories at a subgame in the flow profit Stage 4

of period t to the equilibrium distribution of networks beginning in period t + 1. Consider

a subgame in the negotiation Stage 3 of a period t0. Let ht0(4) be in the support of the

equilibrium of Stage 3. Let ĥt0(4) correspond to that Stage 3 outcome except that ij reach

the null contract. Then Gt0(4),t+1:∞(ht0(4)) and Gt0(4),t+1:∞(ĥt0(4)) are equal.

Assumption 2 essentially says that bargainers attempt to exit impasse as soon as possi-

ble: if ij bargaining fails in period t0, then i returns to j’s network as soon as they would

have been in-network in equilibrium. Future networks are assumed to be unaffected by ij

disagreement because everyone continues to expect ij to reach a contract.3 Good-faith dis-

agreement is in line with the empirical rarity of disagreement, which suggests disagreement

3The assumption only refers to one disagreement, but Assumption 2 rules out continued impasse affecting
subsequent networks by inductively applying the following argument to construct t0 + 2 networks under
impasse. First draw t0+1 networks from Gt0(4),t+1:∞(ĥt0(4)), which by Assumption 2 is the same as drawing

from Gt0(4),t+1:∞(ht0(4)); then draw ht0+1(4) from the distribution of t0+1 histories conditional on ĥt0(4) and
t0 + 1 networks; and then substitute the null contract for ijt0 + 1. This process generates the distribution
of (Gt0+1,Gt0+2) under impasse. By Assumption 2 applied to both draws, this process generates the same
distribution as drawing (Gt0+1,Gt0+2) from Gt0(4),t+1:∞(ht0(4)).
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is painful and consistently avoided. The good-faith assumption is also in line with the Nash-

in-Nash bargaining model’s Nash equilibrium assumption: under single-period Nash-in-Nash

bargaining, contracts are formed assuming other bargains will succeed. I implicitly rule out

any effect of current networks on subsequent future demand. If Assumption 2 did not hold

and disagreement affected subsequent networks, as in Lee and Fong (2013)’s model, then

the form of payments would be modified to incorporate the effect of impasse on subsequent

network formation.
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Figure 1: Histogram of contract start dates for contracts used in the estimation and intro-
duced between 2007 and 2014 for Highmark BCBS (blue) and other modeled insurers (pink).
Vertical lines indicate January 1 of a given year.

The bargaining moment under the model will surmount two challenges created by over-

lapping contracts. First, reality exists in continuous time. As Figure 1 shows, contracts are

introduced throughout the year. If a hospital and insurer enter painful impasse, they may

attempt to return to agreement arbitrarily quickly. This short disagreement behavior also

holds if negotiation is microfounded as a limit of alternating offers as the time between

offers tends to zero (Binmore et al., 1986, Coles and Muthoo, 2003, Collard-Wexler et al.,

2019). Negotiators that consider an agreement now relative to bargaining in an instant, with

every disagreement point bargain recursively defined relative to a subsequent disagreement

bargain, must consider an unbounded number of bargaining states.

The second empirical challenge the Kalai proportional model will surmount is uncertainty.

Nash bargaining does not always incorporate uncertainty in an empirically convenient man-

ner. Even unobservables that are uncorrelated with instruments may prevent researchers from

forming moments on Nash bargains, provided the uncertainty is realized after negotiation

and causes suitable features of the realized gains from trade to be correlated. Appendix D.4
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offers an example wherein under Nash bargaining, nominally ignorable uncertainty intro-

duces estimation bias.

My proposed bargaining model produces a moment that generalizes the static Nash-in-

Nash bargaining model’s moment as follows.

Theorem 1. Suppose hospital i and insurer j form a contract in a subgame period t0 through

the (potentially random) terminal date t∗ that yields (potentially random) realized prices p∗ijt.

Then the expected net present value of realized payments at the moment of contract formation

is equal to the sum of the expected net present value of flow period Nash-in-Nash payments,

a negotiation cost payment, and an impasse repricing payment term:

Et0

[
t∗∑

t=t0

βt−t0DH
ijt(Gt, ϕt)p

∗
ijt

]
= PayNiN + PayNC + PayIRT , (3)

where the expected net present value of static Nash-in-Nash payments is:

PayNiN = Et0

[
t∗∑

t=t0

βt−t0
(
−τij

[
∆ijπ

H
it

]
+ (1− τij)

[
∆ijπ

M
jt

])]
, (4)

the negotiation cost payment PayNC is equal to −τijr
H
i +(1−τij)r

M
j , and the impasse repricing

payment PayIRT is defined in footnote 4.4

Theorem 1 is my main theoretical result. I now provide a proof.

Proof. Suppose hospital i and MCO j reach a bargain in a period t0 subgame. For simplicity,

I proceed assuming bargaining in the period t0 subgame is a pure strategy equilibrium and in

every future subgame (including after current disagreement), ij will reach an infinite number

4The full term requires some notation. Let A superscripts denote the (potentially random) path of pre-
miums and prices if the firms agree in t0 and then enter impasse at the next opportunity. Let D superscripts
denote the (potentially random) path if the firms disagree in t0 and then enter impasse. Then the impasse
repricing term (IRT) is as follows:

PayIRT =− Et0

 ∞∑
t=t0+1

βt−t0(τij)
∑

n∈GH
it /j

 DH
int

(
Gt/ij, ϕ

A
jt|t0

)(
pAint|t0 − ci

)
− DH

int

(
Gt/ij, ϕ

D
jt|t0

)(
pDint|t0 − ci

) 
+ Et0

[ ∞∑
t=t0+1

βt−t0(1− τij)
(
DM

nt (Gt/ij, ϕ
A
t|t0)(ϕ

A
jt|t0 − ηj)−DM

nt (Gt/ij, ϕ
D
t|t0)(ϕ

D
jt|t0 − ηj)

)]

+ Et0

 ∞∑
t=t0+1

βt−t0(1− τij)

 ∑
h∈GM

jt /i

DH
hjt(Gt/ij, ϕ

A
t|t0)p

A
hjt|t0 −DH

hjt(Gt/ij, ϕ
D
t|t0)p

D
hjt|t0

 .

(5)
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of future bargains.5

Let td+1 be the (potentially random) next period in which i and j reach a bargain if

they deviate from equilibrium and disagree d ≥ 0 times after period t0 before returning to

equilibrium. Let V
H,(d)
ijt and V

M,(d)
ijt be the (potentially random) expected net present value

profits beginning in period t under that state. Similarly, let ϕ
(d)
t and p

(d)
hnt be the (potentially

random) premiums and prices on such a path. To align with Equation (5), I write (poten-

tially random) premiums and prices with an agreement followed by impasse as ϕA and pA,

respectively. I write the premiums and prices with disagreement followed by impasse as ϕD
t

and pDhnt, respectively.

I now evaluate value functions. I ignore the net present value negotiation costs outside

the ij pair which, under Assumption 2, are unaffected by the ij bargaining outcome. The

expected value of the agreement to hospital i is:

V
H,(0)
ijt0

= Et0

[
t1−1∑
t=t0

βt−t0
(
DH

int(Gt, ϕ
(0)
t )(p

(0)
int − ci)

)
− rHi + βt1−t0V

H,(0)
ijt1

]
.

Let the (potentially random) joint gains from trade from returning to equilibrium after d

disagreements and then bargaining in period td, measured relative to d + 1 disagreements

followed by agreement, be GFT
(d)
ijt .

I now rewrite and simplify the value function using the Kalai proportional bargaining

solution concept. Under any definition of Kalai proportional bargaining with convex feasible

payoffs (Assumption 1), the hospital’s gains from trade from disagreeing only d times rather

than d + 1 times are V
H,(d)
ijtd+1

− V
H,(d+1)
ijtd+1

= (1 − τij)GFT
(d)
ijtd+1

. Let the expected gains from

trade available from the opportunities to exit impasse after the first agreement be GFTA
ijt0

≡
Et0

[∑∞
d=1 β

td−d0GFT
(d−1)
ijtd

]
. This is finite by the transversality condition (Assumption 1).

Note that for all td ≤ t < td+1, ϕ
(d)
t = ϕA

t and p
(d)
t = pAt (disagreeing more than d + 1 times

has an effect on prices only after d + 2 potential disagreements). Note that Assumption 2

implies that expected networks are unchanged by impasse: an additional ij disagreement

does not change the distribution of future networks conditional on current non-ij networks.

By recursive arguments I omit for brevity, the value of the agreement to hospital i is:

V
H,(0)
ijt0

= Et0

[
t∗∑

t=t0

βt−t0
(
DH

int(Gt, ϕ
A
t )(p

A
int − ci)

)
+

∞∑
t=t∗+1

βt−t0
(
DH

int(Gt/ij, ϕ
A
t )(p

A
int − ci)

)]
− rHi + (1− τij)GFTA

ijt0
.

5In estimation, it is infeasible to include an infinite number of bargains without imposing unreasonable
assumptions like West Virginia being in steady state. I therefore impose a finite horizon model for estimation.
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By an analogous argument, the value of disagreeing in the current period can be written in

terms of the impasse premiums and prices ϕD and pD, respectively, as:

V H,D
ijt0

= Et0

[
∞∑

t=t0

βt−t0
(
DH

int(Gt/ij, ϕ
D
t )(p

D
int − ci)

)
+ (1− τij)GFTD

ijt0

]
,

for some (potentially random) joint postdisagreement expected net present value gains

GFTD
ijt0

. Analogous results hold for the MCO but with τij GFT terms.

The price is chosen to satisfy:

V
H,(0)
ijt0

− V H,D
ijt0

= (1− τij)
(
V

H,(0)
ijt0

+ V
M,(0)
ijt0

− V H,D
ijt0

− V M,D
ijt0

)
.

The remainder of the proof follows by subtracting (1− τij)Et0

[
GFTA

ijt0
−GFTD

ijt0

]
on both

sides and demonstrating, by tedious algebra which I omit for brevity, that only a payment

of the form in the theorem satisfies the remaining equality.

Intuition. Repeated bargaining with short disagreement introduces state space growth in

part because a failed ij agreement in t0 will change the bargaining states beginning in t0+1.

Under Kalai proportional bargaining, the ij negotiators know that any ij gains from trade

negotiated in future periods will be split proportionally to the τij bargaining weights. Kalai

proportional bargainers can act as-if every future ij negotiation attempt will deviate from

equilibrium and fail; the remaining expected gains will not require compensation to split

proportionally. This simplification is a unique property of Kalai proportional bargaining

(Kalai, 1977, Roth, 1979). The Kalai proportional bargaining payment can be chosen to

proportionally split the expected gains created from agreement followed by impasse (with

prices superscripted A) relative to immediate impasse (with prices superscripted D), even if

the true bargaining process involves only disagreeing for one period. In my case, I add and

subtract the value of the Ho and Lee (2017) Nash-in-Nash disagreement profit (with prices

on the A path) to yield Equation (3).

As the next corollary shows, Theorem 1 implies that a discrete-timed representation of

negotiation will suffice even if real contracting is attempted arbitrarily quickly. Among the

terms in Equation (3), only PayIRT reflects off-equilibrium prices. Those additional prices

are the prices formed if ij remain in impasse. Those prices are only formed at discrete times:

the times in which other pairs negotiate or in which insurers set premiums. If bargaining

is conducted in continuous time, the number of instances in which ij might bargain under

impasse without any other player reacting to their anticipated contract is unbounded. For

the purposes of computing the equilibrium contract, those instances can be ignored. This is
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the principal empirical advantage of the Kalai proportional bargaining solution for vertical

markets: even if negotiation is truly attempted arbitrarily quickly, there is an equivalent

bargaining model in discrete time that produces the same predicted payments. In addition,

Theorem 1 shows that under the Kalai proportional bargaining model, uncertainty enters

through expected net present values, so that empirical researchers can form moments for

estimation.

Corollary 1. Consider games of the form of this section, wherein ij use a fixed bargaining

solution f(a, S) that is weakly Pareto-optimal, homogeneous (f(αa, αS) = αf(a, S) for all

α > 0), invariant to adding a scalar to either side’s value (f(a + b, S + b) = f(a, S) + b),

satisfies Thomson (1994)’s Hausdorff continuity condition, and predicts a unique predicted

successful contract in some subgame. Write gKalai
τ for the Kalai proportional bargaining so-

lution with insurer weight τ ∈ [0, 1]. Consider a new game in which period lengths are split

in half, but subsequent conditions are otherwise unchanged going forward from the original

subgame (formalized in Appendix Assumption 7). Then:

Kalai implies state space simplification. If f = gKalai
τij

for some τij, then in the

split-in-half subgame with halved period lengths, the negotiated length is twice as long and

other contract terms are unchanged.

State space simplification essentially implies Kalai. Suppose for all such sub-

games, in the split-in-half subgame with halved period lengths, the negotiated length is twice

as long and other contract terms are unchanged. Then there is a τij ∈ [0, 1] such that for all

S with linear Pareto frontiers and all a, f(a, S) = gτij(a, S).

The homogeneity restriction is that the bargaining solution provides the same predictions

when measuring profits in dollars or in cents; other bargaining solutions are not plausible

for empirical work for bargaining over profits. The scalar addition requirement is that the

sides are applying a bargaining solution to expected profit, so that changing the calcula-

tion of expected value to include expected value in independent markets would not change

the predicted contract in this market. The Hausdorff continuity assumption is satisfied by

most bargaining solutions, but not the utilitarian solution; utilitarian bargaining with equal

weights technically satisfies the property of Corollary 1 because of the game’s strong restric-

tions. If the game were generalized to include arbitrary pairs of agreement and split-in-half

disagreement Pareto frontiers, the homogeneity, continuity, and linearity requirements could

be replaced by a strong individual rationality condition (Roth, 1979).

Proof. See Appendix Appendix D.6.

While the form of Equation (3) is context-specific, the logic of Theorem 1 is modular.

The gains from trade that Kalai proportional bargainers may achieve in the future after
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disagreeing in the present do not have an impact on the contract they will choose in the

present. If the ingredients of flow profits like hospital and insurer demand were changed, a

similar result would hold. If demand were dynamic or disagreement were long-lived, then

under appropriate regularity conditions like Miller and Watson (2013)’s no-fault disagree-

ment, the expected value of impasse would change but the fundamental logic would continue.

The negotiators would still choose a contract to split the expected gains of agreement then

impasse relative to the value of immediate impasse. A full generalization to such models is

outside the scope of this paper.

In the particular context of this empirical model, the impasse repricing term PayIRT

reflects that a future period’s disagreement state is not the future period’s Nash-in-Nash

disagreement state. Under good-faith bargaining, the disagreement state in period t reflects

an impasse point in which the firms continually attempt to bargain starting in t0 but defect

from the resulting subgame equilibrium and fail to agree on a contract. The impasse threat

point produces the same equilibrium payments but allows the negotiators and the researcher

to ignore the many bargaining states they might enter under impasse at instances during

which no one responds to the pair’s anticipated agreement. The term is zero in steady state.

Outside steady state, the term reflects an increasing number of bargaining states as the

bargaining horizon is allowed to grow.6

3.6 Comparison to the Literature

It may help to describe the bargaining moment from Equation (3) relative to the corre-

sponding moment from the static Nash-in-Nash bargaining model’s predictions and conve-

nient generalizations of the literature’s static approach.

A static Nash-in-Nash bargaining model produces a bargaining moment that is the special

case of Equation (3) with one-period contracts. Under Nash bargaining, bargainers choose a

contract to maximize the asymmetric product of gains from trade relative to disagreement.

Write the realized gains from trade to hospital i and insurer j agreeing to a contract in period

t0 with starting price p (holding other characteristics fixed) as ˆGFTH
ijt0

(p) and ˆGFTM
ijt0

(p),

respectively. I implicitly assume that the disagreement value is unaffected by the hypothetical

price the two would like to reach. Then the Nash bargaining solution is:

p∗Nash = argmax
p

(
Et0

[
ˆGFTM

ijt0
(p)
])τij (

Et0

[
ˆGFTH

ijt0
(p)
])1−τij

.

6I currently constrain the PayIRT term to be equal to zero. I expect the term to be small due to the
limited scope of internalized spillovers in West Virginia and because the term is equal to zero in steady state.
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Under static Nash bargaining, the negotiated price satisfies

DH
ijt0

p∗Nash = −τij[∆ijπ
H
it0
] + (1− τij)[∆ijπ

M
jt0
] + PayNC ,

where the Nash-in-Nash flow gains from trade are defined in Equation (2). This bargaining

moment corresponds to the special case of Equation (3) in which contracts only remain

in place for one period. Bargaining in Lee and Fong (2013)’s period-by-period model would

follow the same structure except the [∆ijπ] terms would incorporate any effect of a successful

contract on future profits.

It should be no surprise that the Kalai proportional bargaining model extends static Nash

bargaining. Period-by-period Nash bargaining in this setting is zero-sum at the margin,

so Nash bargaining and Kalai proportional bargaining coincide. In some vertical market

models, Nash bargaining is not zero-sum (Crawford and Yurukoglu, 2012, Grennan, 2013,

Gowrisankaran et al., 2015). A similar generalization argument would hold for such NTU

models if the ratio of marginal values is exactly constant in time and hold as an approximation

argument if the ratio of marginal values is roughly constant in time. This work leaves as an

open question if there is an empirically tractable representation of Nash bargaining with

important variation in marginal value ratios over time.

A bargaining model with multiperiod contracts and static-Nash-type moment corresponds

to myopic bargaining. If bargainers are myopic and only consider the first period of a contract

(β = 0), then the resulting moment is a special case of Equation (3). Myopic Nash-in-Nash

bargaining is essentially static Nash-in-Nash bargaining. The only philosophical difference

of myopic Nash-in-Nash is that some contracts are fixed because they were formed in the

past. Under myopic bargaining, predicted new-contract payments are the static bargaining

predicted payments but only applied to new contracts. The impasse repricing term is zero

under myopia because Nash disagreement and impasse prices are equal in the only period

that the bargainers care about (t0).

Equation (3) nests a limited bargaining foresight Nash bargaining model. The state space

challenge of extending Nash bargaining to multiperiod contracting in vertical markets comes

from internalizing time-varying spillovers of ij bargaining on other pairs’ contracts in the

split of gains from trade. One could consider a limited bargaining foresight model (Dranove

et al., 2015) that has firms Nash bargain with a hold-fixed stance on both current and future

prices. There would be no internalized price spillovers, and the generated moment would be

equivalent to this model with PayIRT set to zero.
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4 Estimation of Empirical Model

I study how changes to benchmark price increases would have affected real spending

in West Virginia. My empirical model requires estimates of hospital and insurer demand

as inputs to gains from trade. My estimated demand systems are empirically plausible. I

overwhelmingly reject a null hypothesis of myopia in bargaining.

4.1 Setting, Data, and Key Descriptives

I characterize contract terms in West Virginia by using three main datasets: unique public

record hospital–insurer panel contract data, more-usual hospital billing data, and state-level

insurer sales data. The contract data shows two characteristics that are likely to hold in

many markets: contracts remained in place for multiple years and were formed at different

times.

I am able to estimate the proposed dynamic bargaining model using novel data on

hospital–insurer contracting from West Virginia. The state had a corridor system: a ceil-

ing on hospital list prices and an average cost floor on payments. The state made hospital–

insurer contracts public records as part of certifying that payments exceeded the non-binding

floor. Both the corridor system and practice of making contracts public records make West

Virginia is unrepresentative for extrapolating effects to the rest of the United States, but

the direction of bias is often unclear. I find that list price-benchmarked contracts were more

common in West Virginia than Weber et al. (2019) find in Colorado. As a result, changes

to Medicare-based benchmark prices would be likely to have smaller effects in West Virginia

than other states. For more on the state’s rate review system, see Murray and Berenson

(2015). I discuss the setting and novel contract data further in Dorn (2024).

I use 2016 uniform billing (UB) data to directly estimate hospital demand and indirectly

estimate insurer sales by location. The UB data covers every inpatient stay in West Virginia.

The data includes each patient’s home county; age range (0–17, 18–44, 45–64, 65–74, or 75+);

MS-DRG diagnosis code; reported primary payor — if the primary payor is one of Aetna,

Highmark Blue Cross Blue Shield (BCBS), or the Health Plan of the Upper Ohio Valley

(HPUOV); and some variables I do not incorporate, such as sex and consumer zip code. The

data is not claims data, because it does not include negotiated or realized payments. I group

diagnoses into one of six main categories based on Ho (2006)’s International Classification

of Diseases (ICD) categories. The main categories are labor, cardiac, digestive, neurological,

and cancer care, as well as other care that is not classified as one of those categories. The

diagnosis category frequencies are in Appendix Table 5.
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I take annual sales and premiums in the West Virginia fully insured market from state-

level accident and health reports like Offices of the Insurance Commissioner (2016). The

reports cover every plan sold in which an insurer is paid a premium to provide comprehensive

medical insurance. I convert premiums and other monetary data to 2019 dollars based on

consumer price index (CPI) inflation. Federal regulations precluded the state from collecting

data on sales in the self-funded market. I infer self-funded sales in 2016 to match estimated

combined sales in the UB data and use the fully insured market to infer premiums and

insurer values before 2016. (See Appendix C.1 for details.)

I focus my main analysis on six insurers: the largest insurer, Highmark BCBS; a regional

insurer, HPUOV; and the four largest for-profit firms, Aetna, Carelink, Cigna, and United-

Health. Carelink was a regional subsidiary of Coventry between 1999 and Aetna’s acquisition

of Coventry at the end of 2014. I refer to these insurers as “modeled” because they are in-

cluded in model estimation. I group the other, smaller, insurers into a category of “other”

insurers.

MCO Prospective Share of Charges

All 46.74 53.26
Modeled MCOs 60.20 39.80
Highmark BCBS 72.27 27.73
HPUOV 56.24 43.76
Other Modeled 13.14 86.86
Nonmodeled 3.03 96.97

Table 1: The estimated share of inpatient payments by benchmark type for fiscal years 2011–
16. Prospective contracts were common, especially for Highmark BCBS.

I find that benchmark choice was highly associated with insurer. The distribution of in-

ferred contract benchmarks is shown in Table 1. An estimated 47% of inpatient payments

were negotiated based on Medicare DRG codes.7 Prospective payments were driven by High-

mark BCBS, for which 72% of payments were prospective. (More than three-quarters of the

remaining payments were at one large and unusual hospital, Charleston Area Medical Cen-

ter.) The regional HPUOV was small at the state level (3.8% to 11.7% of estimated sales),

relatively large in the regions in which it actively competed (more than 27% of estimated

7I observe that in some hospital 2023 price reports, Highmark BCBS payments are benchmarked to
DRG-based weights that are not equal to Medicare’s DRG weights. The differences are small (R2 of 0.92
between the weights). I assume that the benchmark prices generally move proportionally to Medicare, based
in part on the common association of prospective payments with Medicare weights (Cooper et al., 2019,
see Appendix C.3 for further discussion). Even if the two Medicare-based benchmark prices are updated
in different ways, my counterfactual results still hold for the impact of changes to the dynamics of the
Medicare-based benchmarks used by Highmark BCBS.
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2016 sales in the northern panhandle), and paid prospectively for an estimated 56.2% of pay-

ments (more than three-quarters from two hospitals in Wheeling in the northern panhandle).

The other medium-sized insurers I model used list prices as benchmarks for an estimated

87% of payments, and the remaining small insurers I do not model used list prices for an

estimated 97% of payments. Further detail on contract structure is available in Dorn (2024).
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Figure 2: Distribution of reported contract term lengths (hospital-insurer-start-end tuples)
for contracts with fixed expiration dates for Highmark BCBS (blue), other modeled (red),
and nonmodeled insurer (grey) contracts. The two nonmodeled insurer contracts were special
Wheeling-Pittsburgh Steel contracts with hospitals in the state’s northern panhandle.

Contracts would remain in place for multiple years. I present retrospective contract length

data for fixed-length contracts with reported lengths in Figure 2. A given observation is a

hospital-insurer-start-end tuple. As discussed in Figure 2, small contracts would not have

a reported start date but would usually be auto-renew. A point’s x-position represents the

time elapsed between the reported end date and the reported start date in years. Contracts

colors differentiate between Highmark BCBS (blue), other modeled (red), and nonmodeled

(grey) insurers. Large spikes are visible at three years and five years, indicating that these

were standard Highmark BCBS contract lengths. There is a right tail of extreme lengths,

which reflect either expired contracts that were extended or data reporting issues. There were

only four fixed-length contracts from other modeled insurers that were large enough to reach

this graph, all of which had reported lengths of at least three years. As I demonstrate in

Dorn (2024), the omitted auto-renew contracts generally had realized durations of a decade

or longer.

Contracts were formed at different times, even within a give year. Figure 3 plots the

contract start dates for contracts used in the estimation sample below. These are contracts

between modeled insurers and West Virginia hospitals that had reliable start and end dates
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Figure 3: Histogram of contract start dates for contracts used in the estimation sample and
introduced 2007–2014 for Highmark BCBS (blue) and other modeled insurers (pink). Vertical
lines indicate January 1 of a given year. Contracts were not systematically introduced on
the same dates.

in my sample. Contracts were introduced in many months within a given year. This pattern

of staggered formation held even between contracts formed by Highmark BCBS. Further,

the market did not play a follow-the-leader strategy. For example, in 2007, the medium-sized

insurers I model introduced contracts at different times than Highmark BCBS.

I present more descriptive statistics in Appendix C.2 and Dorn (2024). The descriptive

statistics in Appendix C.2 include contract scale based on the estimated hospital demand

system for West Virginia residents at West Virginia hospitals that I discuss in Section 4.3

below.

4.2 Empirical Simplifications

I make some empirical simplifications on dynamics to address the finite number of years

of data available.

I estimate a finite horizon model: I consider only the first T years of a contract in calcu-

lating gains from trade, where T = 5 for my current analysis. I cannot estimate a compelling

infinite horizon model because West Virginia is nonstationary. I take T = 5 as an approx-

imation: as the length of available data goes to infinity, T would go to infinity slowly to

enable the number of bargains in estimation to go to infinity as well. The finite horizon

makes a constant patience parameter β at best an approximation because the fifth year in

should principle best approximate later years. The finite horizon model also calls for care in

modeling how impasse affects other bargainers near the end of the horizon. I calculate gains
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from trade through 2016. Contracts in 2016 are calculated by linearly extrapolating list price

levels from calendar year 2015 contract reports and extrapolating contract list price shares

from 2015.

I do not incorporate the impasse repricing term: I enforce PayIRT = 0 in my current

estimation. Impasse repricing would be equal to zero in steady state. I anticipate it will be

small in the West Virginia setting. This restricts the bargaining space when β > 0 but does

not change the space of myopic predictions. As a result, I expect the bargaining model to

continue to reject myopia after incorporating impasse repricing.

I parameterize the bargaining weights as an insurer fixed effect with hospital size effects

on a logit scale:

log (τij/(1− τij)) = log(τj/(1− τj)) + τSizelog(HospSizei,2006/MeanHospSize2006), (6)

where hospital size is measured as the size of the bargaining system in my first year of

2006 and τj is insurer bargaining power measured at the average-sized hospital system. I

do not require τij to be between zero and one. Instead, if τj ̸∈ (0, 1), I take τij = τj.

Larger hospitals have more bargaining weight if τSize is negative. I assume that the insurer

bargaining weight parameter τj is shared for the for-profit insurers I model (Aetna, Cigna,

Carelink, and UnitedHealth). I set the hospital negotiation costs rHi to zero because it is

not clear the parameter is separately-identified from the insurer costs rMj . I assume the rMj

parameters are constant for non-Highmark-BCBS insurers to increase statistical power.

4.3 Estimation

I estimate hospital demand through logistic maximum likelihood. I estimate insurer de-

mand and bargaining parameters through the generalized method of moments (GMM).

The bargaining moment is:

p∗ijt0Et0

[
t∗∑

t=t0

βt−t0DH
ijt(Gt, ϕt)

p
Bijt

it

p
Bijt

it0

]
= Et0

[
t∗∑

t=t0

βt−t0
(
−τij

[
∆ijπ

H
it

]
+ (1− τij)

[
∆ijπ

M
jt

])]
+ (1− τij)r

M
j .

The left-hand side is observed up to the patience parameter β. The right-hand side includes

bargaining frictions r, bargaining weights τ , and the Nash-in-Nash flow gains from trade. The

Nash-in-Nash flow gains from trade (Equation (2) on Page 16) depend on hospital demand

DH , insurer demand DM , hospital costs ci, insurer noninpatient costs ηj, and prices per

unit of care p. I estimate hospital demand as an input to both the insurer demand model
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and bargaining model. I then estimate insurer demand as an input to the bargaining model.

The bargaining model is estimated based on observed and predicted payments for observed

bargains. I bootstrap standard errors by resampling inpatient cases and state-level sales.

Similar strategies have been used with various datasets in static models, though there are

important differences. Some notable papers with similar identification strategies are Gren-

nan (2013), Gowrisankaran et al. (2015), Ho and Lee (2017, 2019), Ghili (2022), Liebman

(2022) and Prager and Tilipman (2022). Gowrisankaran et al. (2015) and Prager and Tilip-

man (2022) assume insurers maximize a criterion other than profits. Grennan (2013) and

Ghili (2022) have a non-zero-sum downstream response to negotiated prices, which could

be partially captured in levels by my flexible hospital–insurer bargaining weight specifica-

tion (Equation (6)). However, such time-varying NTU bargaining cannot fit into my Kalai

proportional bargaining model for reasons discussed in Appendix D.2. Ho and Lee (2019)

and Ghili (2022) consider network formation in response to disagreement, which is at odds

with my good-faith disagreement and simultaneous bargaining Assumptions 1 and 2. Many

of these works estimate premium responsiveness (Gowrisankaran et al., 2015, Ho and Lee,

2017, 2019, Liebman, 2022, Ghili, 2022). I instead use market premium regulations to esti-

mate demand given observed premiums and focus on price counterfactual effects that can

be conservatively bounded without an estimate of premium responsiveness.

I estimate hospital demand with maximum likelihood. I adapt the notation of Ho (2006),

but similar models are widely used (Capps et al., 2003, Gowrisankaran et al., 2015, Ho and

Lee, 2017, Prager and Tilipman, 2022). I assume that to a patient, the utility of a potential

hospital is a function of the patient’s diagnosis, the hospital’s quality, and the patient’s

location. In particular, I assume the utility of consumer i visiting in-network hospital h with

diagnosis ℓ (cancer, cardiac, digestive, labor, neurological, or other) is:

uH
i,h,ℓ = δHh,ℓ + νi,h,ℓρ+ εi,h,ℓ,

where δHh,ℓ is a hospital-diagnosis fixed effect, νi,h,ℓ are patient-hospital characteristics (dis-

tance in miles, distance squared, and distance interacted with emergency), and ε is a type 1

extreme value shock. I estimate the model with Blue Cross patients in 2016, as all hospitals

are in-network for Blue Cross.

Hospital demand is identified by selection on observables. If consumers are highly likely to

choose Charleston Area Medical Center (CAMC) relative to Saint Francis Hospital one mile

away, my estimates will infer that CAMC offers more utility to consumers after adjusting

for location. The degree to which patients with similar diagnoses choose closer hospitals

identifies the ρ distance coefficients. There are three key assumptions for the hospital demand
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model to be accurate for bargaining estimation. First, Blue Cross hospital choice should be

representative of the generic consumer hospital choice decision conditional on location and

diagnosis (i.e., no endogeneity of insurance choice with respect to hospital value). Second,

observed choices should identify counterfactual choice probabilities with different hospital

choice sets (i.e., unconfoundedness and correct functional form). Third, observed hospital

choice should capture the value of hypothetical hospital networks when choosing an insurer.

I estimate insurer demand mainly using cross-sectional data from 2016, the year in which

I have estimates of local sales. The equation I estimate in 2016 is:

uM
i,j,c,m = δ̃Mj,m + γkWTPj,k,c + ξj,k,c + εi,j,c,m,

where ui,j,c,m is the utility of individual i choosing insurer i in county c within market m,

δ̃Mj,k,m is an insurer–rating-area fixed effect that includes premium levels, WTPj,k,c (Capps

et al., 2003) is the ex ante expected utility of insurer j’s network to an individual of age-

group k in county c, γk are age-group-dependent coefficients on WTP, ξj,k,c is an age–county

unobservable, and ε is a type 1 extreme value shock. Similar models have been used by Ho and

Lee (2017) and Ghili (2022). The equation is estimated using the moment E[WTPj,k,cξj,k,c] =

0, matching observed county-age shares for insurers identified in the inpatient data, and

matching state-level sales for all modeled insurers. I assume that the insurer-rating area

fixed effects δ̃Mj,m are constant across markets for the two insurers that are not identified in

the inpatient data, Cigna and UnitedHealth.

The utility equation does not include premiums. Since 2014, the Affordable Care Act

(ACA) restricts insurer premium setting substantially (CMS, 2023). Insurers set premiums

(outside the large-group market) by geographic rating area defined by the state of West

Virginia.8 Premium variation in 2016 is essentially subsumed into the δ̃Mj,m insurer-rating-

area fixed effects.

My counterfactual analysis must account for changes in insurer attractiveness and pre-

miums over time. For years before 2016, I include an insurer-time fixed effect δ̃Mj,t . The fixed

effect δ̃Mj,t captures systematic changes in insurer value and premiums in previous years. I

solve for the values to match state-level sales by year after adjusting for changes in networks

and local population. I discuss other estimation details in Appendix C.1.

Insurer demand is identified based on variation in network quality conditional on premi-

ums. Insurer regional coverage was heterogeneous within West Virginia’s 11 market rating

areas (see Appendix Figure 23). The γk coefficients are identified by the degree to which con-

8Insurers also have a limited ability to adjust premiums based on tobacco use, family size, and age. In
practice, insurers applied at most a small adjustment for tobacco use, a similar adjustment for large families,
and the same age multipliers. I hold these multiples fixed in my analysis.
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sumers are more likely to choose an insurer with better coverage within a rating area that

standardizes premiums. The key identification assumption is exogeneity: the market-level

unobservables should be uncorrelated with network quality itself. I do not model any poten-

tial variation of large-group employer premiums within ACA rating areas. My main analysis

holds premiums fixed and calculates back-of-the-envelope downstream effects of counter-

factual prices on Nash-Bertrand optimal premiums based matching the average premium

elasticity from Ho (2006). As a result, my analysis does not require estimating premium

responsiveness. I discuss these and some other caveats in demand estimation in Appendix

C.4.

I estimate my dynamic bargaining model with GMM. I define ωijt(θ̄) to be the normalized

net present value residual payment from ij negotiating in period t at parameters θ̄:

ωp
ijt(θ̄) =

∑t∗

t=t0
β̄t−t0

(
DH

ijtp
H
ijt −

{
−τ̄ij[∆ijπ̄

H
it ] + (1− τ̄ij)[∆ijπ̄

M
jt ]
})

− (1− τ̄ij)r̄
M
j∑⌊mean(t−t0)⌋

t=t0
β̄t−t0 + (mean(t− t0)− ⌊mean(t− t0)⌋) β̄⌈mean(t−t0)⌉

, (7)

where a b̄ar denotes a parameter that is estimating in my bargaining model and mean(t−t0)

is the average bargain’s number of years elapsed. The denominator is added to express ωijt in

terms of the ij net present value payment and an aggregate normalization to avoid attenu-

ating the estimated patience parameter β. (As seen in Appendix Table 8, I would estimate a

similar β̂ if I instead normalized by the average value of
∑

βt across bargains used in model

estimation.) My main specification calibrates hospital costs from reported hospital average

costs, which should roughly track the outside option of Medicare payments if hospitals are

near capacity, and adjust hospital costs in robustness tests. The parameters to estimate are

the τj insurer bargaining weights, τSize contribution of size to hospital bargaining weight, β

patience parameter, ηj insurer noninpatient costs, and payment-equivalent negotiation costs

rMj .

Bargaining moments are constructed as follows. I take the net present value payment

residual ωp
ijt(θ̄) from Equation (7). I define ωM

jt (θ̄) =
∑2016

t=2011

η̄jD
M
jt +

∑
h DH

hjtphjt

ϕjtDM
jt

− MLRj,t as

the difference between model-implied medical loss ratio and the medical loss ratios MLRj,t

reported to CMS for years 2011 and later. My moments are E[Zpωp] = 0 and E[ZMωM ] = 0.

The hospital–insurer payment instruments Zp are insurer dummies and indicators for hospital

size in six groups. The insurer medical loss ratio instruments ZM are insurer dummies.

Identification of bargaining parameters comes from various sources. The ηj insurer nonin-

patient costs are identified primarily from the CMS medical loss ratio reports but are shifted

by the GMM procedure based on observed payments. The flow gains from trade [∆ijπ] are

identified from estimated demand, ηj noninpatient costs, and calibrated hospital costs c.

The τij bargaining weights are identified by the ratio of realized gains from trade at the
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negotiated price and varying the hospital or insurer. The β bargaining weights are identi-

fied by future gains from trade and payments helping explain the realized price conditional

on current gains. The rM negotiation costs are identified from any remaining differences in

the levels of payments and the levels of predicted payments. I discuss potential biases in

Appendix Appendix C.4.

4.4 Parameter Estimates

My estimated demand systems are generally plausible. I overwhelmingly reject the null

hypothesis of myopia and estimate an annual patience parameter of β = 0.899.

Dependent variable:

choice
Cancer Cardiac Digestive Labor Neurological Other

(1) (2) (3) (4) (5) (6)

Distance −0.115∗∗∗ −0.113∗∗∗ −0.117∗∗∗ −0.121∗∗∗ −0.077∗∗∗ −0.108∗∗∗

(0.014) (0.004) (0.005) (0.004) (0.003) (0.002)

Distance Squared 0.0004∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0003∗∗∗ 0.0002∗∗∗ 0.0003∗∗∗

(0.0001) (0.00002) (0.00002) (0.0001) (0.00002) (0.00001)

Distance x Emergency −0.010 −0.012∗∗∗ −0.024∗∗∗ 0.020∗∗∗ −0.013∗∗∗ −0.015∗∗∗

(0.015) (0.003) (0.004) (0.005) (0.004) (0.001)

Observations 284 2,469 2,048 4,143 1,094 10,053
R2 0.555 0.577 0.615 0.646 0.497 0.555
Log Likelihood −286.987 −2,722.077 −2,324.572 −3,923.918 −1,297.677 −12,578.030

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Estimated consumer valuation of distance in hospital choice (in utility units) by
diagnosis category. Consumers generally are admitted to closer hospitals, have a diminishing
loss from travel, and — with the exception of labor cases — are especially unlikely to travel
distances for emergency care.

I present estimated hospital demand distance parameters in Table 2. Regardless of diag-

nosis, consumers prefer closer hospitals and have a diminishing loss from distance. Consumers

with neurological conditions are relatively insensitive to distance. Patients travel less far for

emergency care outside labor cases. In the 201 hospital-diagnosis fixed effects I estimate but

omit for space, consumers place the highest value on Ruby Memorial, the West Virginia

University (WVU) Health system’s flagship hospital. Hospitals near the state’s border like

Cabell Huntington and Mon Health Medical Center are generally higher value than their

state-level share would suggest, consistent with border hospitals also competing for patients
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from neighboring states. Hospital fixed effects are comparable for most diagnoses but are

smaller for labor discharges.

MCO:

Aetna Highmark BCBS HPUOV Cigna UnitedHealth

-1.39*** 1.33*** -0.8*** -3.54*** -2.43***
(0.13) (0.13) (0.13) (0.11) (0.11)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Estimated average 2016 insurer value including premiums (δ̃Mj,m) after accounting
for variation in inpatient network quality.

My insurer demand estimates are in Table 3 and Appendix Table 6. Table 3 includes

insurer mean δ̃Mj,m fixed effects inclusive of premiums. Consumers are more likely to choose

Highmark BCBS than can be explained by the insurer’s inpatient network alone, which may

reflect a better outpatient network, better perceived quality, inertia, or Highmark BCBS’s

nonprofit status. The regional HPUOV is also nonprofit and has a larger fixed effect than the

three national for-profit insurers, which in part reflects lower premiums. Appendix Table 6

presents the estimated WTP coefficients. Consumers are more likely to purchase insurance

with a better network. The network value coefficients differ substantially by age in absolute

terms. The scale of network valuation reflects age differences: younger consumers are less

likely to get sick and so have a smaller variation in WTP across networks.

My main bargaining estimates are presented in Table 4. I present estimates under three

bargaining strategies, all of which use the same hospital and insurer demand estimates:

a. Only-2015. This approach estimates bargaining parameters as-if only data from 2015

is available. In particular, the only-2015 model includes all hospital–insurer pairs with

2015 contracts as if they simultaneously negotiated new contracts at the start of the

year, even if the contract was truly formed many years earlier. This approach also only

includes 2015 MLRs in the GMM procedure.

b. Myopic. This approach estimates bargaining parameters for contracts with confirmed

start and end dates, but constrains the discount rate β to zero to recover a static-type

estimation strategy.

c. Forward-Looking. This approach is analogous to myopic, but allows the annual discount

rate β to take on any value between zero (which corresponds to myopia) and one (which

corresponds to no discounting after inflation).
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Parameter

β τBCBS τHPUOV τFP −τSize

Only-2015 · 0.487** -7.54 0.694*** 3.354
(Nash/Kalai) (·) (0.191) (17.204) (0.175) (22.875)

Myopic · 0.876*** 0.825*** 0.861*** 1.037***
(Nash/Kalai) (·) (0.012) (0.232) (0.034) (0.199)

Forward-Looking 0.899*** 0.854*** 0.877*** 0.889*** 0.989***
(PayIRT = 0) (0.03) (0.006) (0.026) (0.005) (0.028)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Estimated bargaining and patience weights for the only-2015-data (first row) myopic
(second row) and more general forward-looking (third row) bargaining models. The MCO τj
bargaining weights are estimated for Highmark BCBS (BCBS), HPUOV, and the modeled
for-profit insurers (FP) and are evaluated at the average bargain’s hospital bargaining system
log 2006 size. Estimates under alternative bargaining models are presented in Table 8.

I present estimates of noninpatient costs (η) and net negotiation costs (rMj ) in Table 7.

I find that bargainers are forward-looking. I find excellent model fit (Appendix Figure 11).

My estimated model overwhelmingly rejects a null hypothesis of myopia, which corresponds

to the case β = 0. My estimated patience parameter of β = 0.899 is also below one. These

indicate that firms care about future period profits (β > 0) but value a dollar today less than

a dollar tomorrow (β < 1). Even though the forward-looking model targets years beyond the

initial year of the contract, the forward-looking bargaining model even does a slightly better

job of predicting initial share of list prices than the myopic model (Appendix Figure 7),

with correlations between predicted and real starting share of list prices of 0.521 and 0.452,

respectively.

The estimated bargaining weights under the forward-looking model are generally empiri-

cally plausible. I find little heterogeneity in bargaining power across insurers: I estimate that

insurers keep 85%–89% of the joint surplus when bargaining with a medium-sized hospital

system (Table 4). The estimated weights are somewhat larger than other estimates in the

literature based on claims data (Ho and Lee, 2017, Ghili, 2022). There is no restriction in my

estimation procedure that both sides must gain from trade under the negotiated contracts,

so it is reassuring that the myopic and forward-looking models estimate bargaining weights

τ between zero and one.

Including old contracts in estimation would change the impression of bargaining power.

The Only-2015 approach, which includes both old and new contracts in estimation, would
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underestimate BCBS and for-profit bargaining power relative to the bargaining models that

include only new contracts. The estimated for-profit bargaining weight is larger than the

estimated BCBS bargaining weight, but the difference is statistically imprecise. The Only-

2015 approach would estimate a large but statistically imprecise coefficient on hospital size

and a highly negative but highly imprecise HPUOV bargaining power.

The results are qualitatively similar under most other specifications (Table 8). Other

plausible specifications can reduce the estimated discounting rate β to 0.7, but continue to

reject a null hypothesis of myopia. The estimated discount parameter β is also dependent on

the exact split of hospital groups in constructing instruments: bootstrapped β standard errors

with reestimated hospital groups increase from 0.03 to 0.109, driven by the 18% of bootstraps

in which United Hospital Center’s assignment changes. Restricting τSize to zero stabilizes the

Only-2015 model and changes the BCBS, HPUOV, and for-profit bargaining weight estimates

to 0.365, 0.278, and 0.16, respectively, underscoring Dorn (2024)’s descriptive evidence that

current payments can underrate smaller insurers’ bargaining power.

I find the Kalai proportional bargaining model’s predictions would likely approximate a

complex dynamic Nash bargaining model’s predictions. Under a Kalai proportional bargain-

ing model, gains from trade are split proportionally to the τij bargaining weights. Under a

Nash bargaining model, the split of gains from trade also reflects the ratio of marginal values

of the negotiated price. I calculate predicted marginal value ratios including the direct effect

of each bargain’s price on the firms’ profits through other contracts. I find that the estimated

marginal value ratios are generally close to one (Appendix Figure 9). The rare exceptions

have the opposite correlation with payment residuals as the Nash model would predict (Ap-

pendix Figure 10). The result is neither dispositive evidence that a Nash bargaining model

would estimate similar marginal values nor that a complex dynamic Nash bargaining model

would be more accurate. However, the evidence is consistent with the Kalai proportional

bargaining model offering substantial tractability gains with potentially small consequences

for empirical conclusions, as well as limited ability to use observed payments to reject either

model.

5 Counterfactuals under Dynamic and Static Models

I empirically investigate benchmark price counterfactuals. I consider a change to Medicare

cost reimbursement to roughly track hospital reported costs. I find that faster Medicare

payment increases would be passed on to commercial insurer spending through Medicare’s

role as a benchmark. A myopic model overestimates the effect by 45% or more by ruling out

forward-looking offsets.
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5.1 Changing Benchmark Price Increases

Medicare reimbursement is an active topic of regulatory debate. Medicare inpatient ex-

penditures amounted to $319 billion in 2019 (CMS, 2022), comparable to the gross domestic

product of Egypt (World Bank, 2023) and enough to account for 27% of American hospital

expenditures, 40% of Medicare expenditures, and 7% of federal government spending (CBO,

2020, CMS, 2022). The American Hospital Association argues that Medicare payment in-

creases have failed to keep up with costs (Thompson, 2023) as policymakers reduce Medicare

payments to make up for budgetary shortfalls (Finder, 2022).

Spending at hospitals on behalf of patients with commercial insurance is an important

policy target. In 2019, hospital expenditures paid for under private insurance reached $434
billion — 42% of private health insurance expenditures and 36% more than Medicare ex-

penditures (CMS, 2022). The high prices paid on behalf of commercially insured patients

are often considered major drivers of American health spending (McGough et al., 2023).

Commercially insured payments to hospitals averaged 235% of what Medicare would have

paid for the same care in 2019 (Whaley et al., 2022), making spending on behalf of com-

mercially insured patients at hospitals an important policy target. Those costs are passed

on to consumers in the form of increased premiums (Handel, 2013, Trish and Herring, 2015,

CBO, 2022) and wage and employment reductions (Baicker and Chandra, 2006, Arnold and

Whaley, 2020).

I study the consequences of proposed changes to Medicare benchmark price increases on

commercially insured payments, focusing on Medicare’s role as a benchmark in negotiated

prices. If Medicare reformed reimbursement to increase payments more quickly in response

to hospital pressure, then it would affect the dynamics of the many Highmark BCBS and

occasional HPUOV contracts that were benchmarked to prices based on Medicare. I focus

on benchmark dynamics and hold any effect on Medicare-based outside options constant

(Clemens and Gottlieb, 2017). My specific counterfactual is an additional one-percentage-

point annual increase in hospital prospective prices announced at the end of 2006 to begin in

2007. The one-percentage-point increase would roughly offset the divergence between West

Virginia Medicare payments and hospital costs in this era (Appendix Figure 8). The change

would correspond to a $26.5-billion increase in 2015 Medicare hospital expenditures (CMS,

2022, expressed in 2019 dollars).

Counterfactual payments are calculated as follows. I hold benchmark choice, contract

length, and premiums constant in calculating counterfactual prices. The choice of bench-

mark is highly associated with bargaining power and likely to be at most moderately af-

fected by the change in benchmark dynamics. Most fixed-length contracts were formed by
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Highmark BCBS, so holding lengths constant mostly corresponds to assuming that High-

mark BCBS would not change which contract terms were formed on a three-year or five-year

basis and that the other insurers would not change their share of charges renewal strategies.

Premiums would increase in response to higher bargained prices. I estimate back-of-the-

envelope downstream premium effects based on Ho (2006)’s estimated own-price elasticity

and a Nash-Bertrand premium model. I am conservative by not estimating any reinforcing ef-

fect of higher premiums on prices. I use plug-in estimates of counterfactual benchmark prices.

I interpret the ωp net present value payment residuals as counterfactual-invariant unobserved

components of gains from trade, and choose starting payments to leave ωp unchanged. This

approach may introduce slight bias if benchmark price uncertainty is first-order relative to

the change to benchmark price dynamics. One potential avenue for future work is to apply

tools from the time series literature to develop a more precise approach to counterfactuals.
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Figure 4: Estimated counterfactual spending effects from a one-percentage-point increase in
Medicare payments from a myopic (blue) and dynamic (red) bargaining model. The dashed
line indicates 0.20 percentage point additional annual spending increases starting in 2009.

I summarize the estimated effects by year under the estimated myopic and forward-

looking bargaining models in Figure 4. The effects are presented as a percentage of modeled

insurer spending. (In Dorn (2024), I estimate that nonmodeled insurers accounted for roughly

one-quarter of spending.) The estimated effect under the forward-looking model is negative

and near-zero in 2009 and 2010, when Highmark BCBS and HPUOV negotiated many new

prospective contracts and correspondingly reduce starting prices. There is an analogous dip

in 2012 when Highmark BCBS revised many of the contracts formed in 2009. In later years,

contracts remain in place and effects compound. After nine years, the estimated increase

in spending is 1.3%. The estimated increase in West Virginia spending in the commercially
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insured inpatient market would be $7.1 million. The percent change in spending after nine

years, if extrapolated to the 2015 national hospital market and inflation-adjusted to 2019

dollars, corresponds to a $4.98-billion effect.
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Figure 5: The degree to which myopic counterfactual predicted spending exceeds dynamic
predicted spending as a percent of the estimated effect under the dynamic model. The myopic
model often overestimates the effect by 45% or more.

A myopic model would substantially overestimate the effects. Figure 5 reports the annual

overestimate of the myopic model as a percentage of the dynamic estimated effect. The

myopic model consistently overestimates the effect by 45% or more. In the middle of the

panel, when the forward-looking model estimates are small due to many renegotiations, the

myopic model overestimates the effect by many multiples. The reason the myopic bargaining

model overestimates the effects of benchmark price increases is because forward-looking

bargainers respond to anticipated future increases under the contracts they negotiate by

reducing starting prices and offsetting the effect.

The estimated annual spending increase of 1.319% is below the benchmark price increase

of 9.37% for three main reasons: many payments were benchmarked to unaffected list prices,

the Medicare-benchmarked contracts were renegotiated often, and the forward-looking bar-

gainers revise starting prices downward based on the anticipated future benchmark price

increases. I measure the importance of the first mechanisms by considering a same-multiple

model, wherein the firms kept their original negotiated benchmark multiples α in place.

Appendix Figure 12 presents the different estimated effects. Viewed as a change to annual

spending increases, such a same-multiple model produces an annual spending increase of

0.564 percentage point after nine years. The myopic model, which accounts for the first two

responses, reduces the annualized increase by 0.35 percentage point. The forward-looking

40



model, which incorporates all three responses, further reduces the annualized increase by

0.068 percentage point and introduces important dynamics along the way.
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Figure 6: Estimated effects on payments by insurer from a one percentage point annual
increase in Medicare payments.

The effects on insurer payments and hospital payments are in Figure 6 and Appendix

Figure 13, respectively. The effects are largest for the insurers that use prospective contracts

most frequently (Highmark BCBS, HPUOV, and Carelink before being acquired in 2014).

In 2009, Highmark BCBS payments would change by -0.42% due to the forward-looking

response for Highmark BCBS’s many new prospective contracts. Other insurers often see

reduced payments in years where they negotiated new prospective contracts with the WVU

Health System. Turning to hospital payments, in 2015, most hospitals would have spending

increases of 1% to 3%. A fair number of medium-sized hospitals would be almost entirely

unaffected.

I add a premium-responsiveness coefficient to estimate downstream effects of the new

prices on premiums. I calculate the premium coefficient needed to match Ho (2006)’s average

own-price elasticity of -1.14, which corresponds to a coefficient on 2019 annual premiums of

-0.00032. I then estimate downstream effects on premiums from Nash-Bertrand competition,

with insurer-year marginal costs inverted from the Nash-Bertrand premium-setting first order

condition. I do not estimate any reinforcing effect of new premiums on negotiated prices,

which would exacerbate the effects further.

Appendix Figure 14 presents the full path of estimated downstream premium effects. I

estimate that in 2015, Highmark BCBS premiums would increase by 0.2%, and HPUOV pre-

miums would increase by 0.51%. The other modeled insurers are less likely to use Medicare-

based benchmarks and would see premiums increase by 0.1%. Altogether, premiums would
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increase by 0.21%, which extrapolates nationally based on inflation-adjusted earned premi-

ums (NAIC, 2022) to $1.33 billion. The extrapolated premium effects are smaller than the

extrapolated payment effects because this premium extrapolation holds outpatient payments

constant.

I use my estimated system to study other counterfactuals. In Appendix Figure 15, I

plot the estimated spending effect of instead reducing Medicare benchmark prices by one

percentage point annually; after nine years, the estimated effect would be a 1.29% reduction

in spending. Measuring the effect as an annualized change to spending after nine years,

spending is increased by 0.146 percentage point annually in the main counterfactual and

reduced by 0.14 percentage point here.

In Appendix Figure 16, I plot the estimated spending effect of a lax restriction on list

price increases. The counterfactual is implemented as a cap at the previous year’s Medicare

spending increase plus two percentage points, with significant safeguards to the hospitals’

benefit. (More details on the construction are available in Appendix C.5.) To be conservative,

I hold prices constant for CAMC, a large hospital with mostly low-discount share of charges

contracts, when calculating counterfactual payments. I estimate that this regulation would

reduce aggregate list price increases from roughly three percentage points faster than costs

annually to roughly two percentage points faster than costs and would reduce payments

by 0.11%–1.3% depending on the year. The list price restriction counterfactual is directly

relevant to policy. However, the associated share of charges contracts are rarely renegotiated,

so the estimated effects are only slightly too large under a myopic bargaining model.

6 Discussion

I find that dynamic benchmarks play an important role in hospital–insurer payments

based on a unique panel dataset of contracts in West Virginia. I study the implications

of changing Medicare payment dynamics through Medicare’s role as a benchmark used to

construct payments under multiyear contracts. I propose a tractable dynamic vertical market

bargaining model. The model enables negotiators to be forward-looking and respond to future

benchmark price increases by reducing starting prices. I reject the null hypothesis of myopia

and find that forward-looking firms offset changes to benchmark price increases substantially

but incompletely.

The recognition that many real hospital–insurer contracts are dynamic opens up exciting

directions for future research in health economics. I study only lax counterfactuals that

would have minimal effects on contract length and benchmark choice due to data restrictions.

Other panel datasets from other states or after the end of West Virginia’s corridor system in
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2016 could speak to dynamic regulations with stronger impacts. As Dorn (2024) documents,

list-price-benchmarked contracts lead to predictably quick payment increases under auto-

renew contracts that often remain in place for a decade or more. The existence of long-lived

list-price-benchmarked contracts is intuitively surprising, but may reflect efficiency gains

through foregone negotiations. There are also interesting questions around the drivers and

consequences of variation in contract terms across hospitals and insurers.

Bargaining has dynamic implications in other settings. For example, carriage contracts

between television distributors and networks often last for multiple years (Nallen et al., 2019,

Marcelo, 2021), and disputes are often ended by the threat of not carrying specific time-bound

programming (Hayes, 2023). In the consumer packaged goods industry, multiyear contracts

can create lagged inflation effects (Baudendistel, 2023). Many markets beyond healthcare

have auto-renew contracts that in practice renew for many years (Dutta, 2021). In a labor

economics context, firms can bargain with multiple unions (Machin et al., 1993) and those

unions can have contracts with multiple firms (Davidson, 1988) that may be negotiated

at different times. Many important questions can be answered by focusing on one period in

isolation, but this work may help answer questions about the dynamics of multiyear contracts

that interact.

References

Abbey, D. C. (2012). Cost-Based, Charge-Based, and Contractual Payment Systems. Pro-

ductivity Press Inc., 1st edition.

Abbott, T. A. (1995). Price regulation in the pharmaceutical industry: Prescription or

placebo? Journal of Health Economics, 14(5):551–565.

AHA (2022). Fact sheet: Majority of hospital payments dependent on Medicare or Medicaid.

Andreoni, J. and Bernheim, B. D. (2009). Social image and the 50-50 norm: A theoretical

and experimental analysis of audience effects. Econometrica, 77(5):1607–1636.

Arnold, D. and Whaley, C. M. (2020). Who Pays for Health Care Costs? The Effects of

Health Care Prices on Wages. RAND Corporation, Santa Monica, CA.

Atkinson, G. (2009). State hospital rate-setting revisited. Commonwealth Fund, 69(1332).

Backus, M., Blake, T., Larsen, B., and Tadelis, S. (2020). Sequential bargaining in the

field: Evidence from millions of online bargaining interactions. The Quarterly Journal of

Economics, 135(3):1319–1361.

43



Bagger, J., Fontaine, F., Postel-Vinay, F., and Robin, J.-M. (2014). Tenure, experience, hu-

man capital, and wages: A tractable equilibrium search model of wage dynamics. American

Economic Review, 104(6):1551–96.

Bagwell, K., Staiger, R. W., and Yurukoglu, A. (2020). “Nash-in-Nash” tariff bargaining.

Journal of International Economics, 122:103263.

Baicker, K. and Chandra, A. (2006). The labor market effects of rising health insurance

premiums. Journal of Labor Economics, 24(3):609–634.

Baker, L. C., Bundorf, M. K., and Kessler, D. P. (2016). The effect of hospital/physician

integration on hospital choice. Journal of Health Economics, 50:1–8.

Baudendistel, M. (2023). CPG cost pressure begins to ease. FresightWaves.

Beier, E. (2020). 5 steps to better payer contract negotiation. MediGain. Year unknown.

Berenson, R. A. and Murray, R. B. (2022). How price regulation is needed to advance market

competition. Health Affairs, 41(1):26–34. PMID: 34982623.

Bilal, A., Engbom, N., Mongey, S., and Violante, G. L. (2022). Firm and worker dynamics

in a frictional labor market. Econometrica, 90(4):1425–1462.

Binmore, K., Rubinstein, A., and Wolinsky, A. (1986). The Nash bargaining solution in

economic modelling. The RAND Journal of Economics, 17(2):176–188.

Binmore, K., Shaked, A., and Sutton, J. (1989). An outside option experiment. The Quarterly

Journal of Economics, 104(4):753–770.
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Brügemann, B., Gautier, P., and Menzio, G. (2018). Intra firm bargaining and Shapley

values. The Review of Economic Studies, 86(2):564–592.

Bundorf, M. K., Levin, J., and Mahoney, N. (2012). Pricing and welfare in health plan

choice. American Economic Review, 102(7):3214–48.

44
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A Appendix Tables and Figures
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Figure 7: Predicted (x axis) and realized (y axis) bargain starting share of list prices under
myopic (left, R2 = −0.116) and forward-looking (right, R2 = 0.027) bargaining models. R2

can be negative because model predictions are chosen to minimize net present value payment
residuals, while this R2 reflects list price share residuals.
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Table 5: The percent of discharges by diagnosis category for all inpatient discharges (top row),
the commercial nonnewborn discharges I use for estimation (middle row), and the Highmark
BCBS subset of commercial discharges I use for hospital demand estimation (bottom row).
Labor and cardiac discharges are the largest share of actively defined categories. Medicare
patients are more likely to have cardiac discharges and less likely to have labor discharges
than the commercially insured sample I use in estimation.

Discharges Labor Cardiac Digestive Neurological Cancer Other

All 16.86 15.42 8.29 7.47 1.04 50.16
Commercial WV 19.85 12.41 9.97 5.60 1.33 50.11
Highmark BCBS 20.22 12.49 9.84 5.52 1.49 49.72

Table 6: Insurer demand coefficient on network willingness to pay by age group. Consumers
are generally more likely to purchase insurance from insurers with better networks. The
coefficients are largest for young groups with smaller standard deviations in network quality.

WTP Coefficient

γ0−17 γ18−44 γ45−64 γ65−74 γ75+

26.6*** 4.94*** 2.76*** 2.79*** 2.05***
(2.65) (0.67) (0.33) (0.27) (0.15)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Additional estimated bargaining parameters with estimated τSize hospital size co-
efficient (top) and with τSize set to zero (bottom) in calculating hospital–insurer bargaining
weights. BCBS parameters correspond to Highmark BCBS. “Data” corresponds to average
difference between MLR-implied costs per life and estimated average inpatient payments per
life insured, and would exactly set the MLR moment to zero for the myopic and forward-
looking models. The estimated β would be similar if η were constrained to exactly fit MLR
reports (Appendix Table 8). The rM net negotiation costs are close to their starting point
of $10,000 and may weakly identified or unidentified.

Parameter (τSize Estimated)

ηBCBS ηHPUOV ηAetna ηUnitedHealth ηCigna ηCarelink rMyBCBS rMnBCBS

Only-2015 3657*** 3404*** 3658*** 2008*** 4627*** 3139*** 10000*** 9999***
(Nash/Kalai) (45) (85) (116) (29) (32) (39) (2614) (1441)

Myopic 4640*** 4036*** 3659*** 3197*** 4624*** 3139*** 10000*** 10000***
(Nash/Kalai) (14) (650) (37) (374) (26) (463) (1444) (1)

Forward-Looking 4638*** 3631*** 3660*** 3284*** 4626*** 3140*** 9999*** 9999***
(PayIRT = 0) (130) (302) (37) (69) (30) (45) (29) (65)

Data 3600 3356 3554 1999 4635 3114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Parameter (τSize = 0)

ηBCBS ηHPUOV ηAetna ηUnitedHealth ηCigna ηCarelink rMyBCBS rMnBCBS

Only-2015 3639*** 3412*** 3660*** 2010*** 4622*** 3139*** 10001*** 23581***
(Nash/Kalai) (14) (28) (37) (27) (26) (36) (1143) (1415)

Myopic 4639*** 3412*** 3659*** 2008*** 4624*** 6176*** 17779*** 10000***
(Nash/Kalai) (14) (349) (37) (28) (26) (493) (904) (0)

Forward-Looking 4638*** 3413*** 3659*** 2008*** 4624*** 5972*** 10000*** 18098***
(PayIRT = 0) (1546) (295) (487) (447) (390) (521) (761) (699)

Data 3600 3356 3554 1999 4635 3114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Comparison of estimated bargaining parameters with other potential modeling
choices. I describe the rows in Appendix C.6.

Parameter

β τBCBS τHPUOV τFP −τSize

Forward-Looking 0.899*** 0.854*** 0.877*** 0.889*** 0.989***
(Baseline) (0.03) (0.006) (0.026) (0.005) (0.028)

Forward-Looking 0.714*** 0.852*** 0.86*** 0.685*** ·
(No Hosp. Size) (0.032) (0.012) (0.008) (0.028) (·)

Forward-Looking 0.925 0.854 0.876 0.89 0.991
(Mean

∑
βt normalization) (·) (·) (·) (·) (·)
Forward-Looking 0.497 0.939 0.938 0.942 1.009

(Estimate Hospital Costs) (·) (·) (·) (·) (·)
Forward-Looking 1 1 1 1 -0.276

(Hospital Costs * 2) (·) (·) (·) (·) (·)
Forward-Looking 0.931 0.838 0.858 0.875 0.969

(Hospital Costs * 0.9) (·) (·) (·) (·) (·)
Forward-Looking 1 0.778 0.781 0.821 0.903

(Hospital Costs * 1/2) (·) (·) (·) (·) (·)
Forward-Looking 0.895 0.834 0.847 0.871 0.913
(Medicare Costs) (·) (·) (·) (·) (·)
Forward-Looking 0.826 0.864 0.874 0.891 0.892

(η from MLR) (·) (·) (·) (·) (·)
Forward-Looking 0.722 0.881 0.905 0.897 0.847

(Inpat. Share GFT Weight) (·) (·) (·) (·) (·)
Forward-Looking 0.99 0.854 0.875 0.881 1

(β = 0.99) (·) (·) (·) (·) (·)
Forward-Looking 0.696 0.001 0.001 0.001 ·
(Hospital TIOLI) (·) (·) (·) (·) (·)
Forward-Looking 0.817 0.5 0.5 0.5 ·

(τ = 0.5) (·) (·) (·) (·) (·)
Forward-Looking 0.52 0.999 0.999 0.999 ·

(MCO TIOLI) (·) (·) (·) (·) (·)
Only-2015 · 0.487** -7.54 0.694*** 3.354
(Baseline) (·) (0.191) (17.204) (0.175) (22.875)

Myopic · 0.876*** 0.825*** 0.861*** 1.037***
(Baseline) (·) (0.012) (0.232) (0.034) (0.199)

Only-2015 · 0.365*** 0.278* 0.16*** ·
(No Hosp. Size) (·) (0.011) (0.143) (0.048) (·)

Myopic · 0.863*** 0.845*** 0.631*** ·
(No Hosp. Size) (·) (0.006) (0.016) (0.027) (·)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 8: The ratio of list price charges (top) and real payments (bottom) to reported costs
by Medicare (red) and private payors (blue) for West Virginia hospitals by year from hospital
reports. Dashed lines represent Medicare 2006 values extrapolated based on 103% and 99%
annual increase rates, respectively.
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Figure 9: The estimated direct spillovers of each bargained contract on hospital (x axis)
and insurer (y axis) payments relative to direct payments under the contract. All estimated
insurer spillovers and all but three estimated hospital spillovers are less than 10% of payments
under the contract, so that the marginal ratio term in Nash bargaining’s gain from trade
split would be close to one.
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Figure 10: The net present value payment residual as a percentage of predicted payment (y
axis) and marginal value ratio (x axis) for estimation bargains. Size corresponds to the net
present value payment (weight in bargaining moment). Most marginal value ratios are close to
one (x axis near one) corresponding to similar predicted Nash and Kalai proportional splits of
gains from trade. A true Nash bargaining model would predict a positive correlation between
marginal value ratio (x axis) and realized payments net of Kalai proportional prediction (y
axis). The handful of contracts with larger marginal value ratios have residuals close to zero
(y values near horizontal line), and if anything exhibits a negative correlation.
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Figure 11: For the 63 estimation bargains, the predicted (x axis) and realized (y axis) net
present value payment within the finite horizon used in estimation. Net present values are
calculated using the estimated β = 0.899. Axes are log-scaled for comparability. Perfect pre-
diction fit is indicated with the dashed line. There may be some bias for small contracts (gen-
erally non-Highmark-BCBS contracts at small-to-medium hospitals) that get little weight in
the estimation procedure, but otherwise the model fit seems to be quite good.
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Figure 12: Comparison of estimated effects to a same-multiple model (light blue) in which
bargainers keep their original benchmark multiple in place. The models mainly diverge due
to contracts renegotiating a lower share of Medicare prices (myopic model, red) and firms
responding to expected future price increases by negotiating lower starting prices (forward
looking model, blue). There are also smaller equilibrium spillover effects in boyh the forward-
looking and myopic models.
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Figure 13: Estimated effects of increased Medicare cost reimbursement on each hospital’s
received payments in 2015. There is some indication that smaller hospitals would see larger
private payment increases.

62



0.0

0.1

0.2

0.3

0.4

0.5

2006 2009 2012 2015
Year

∆ 
P

re
m

iu
m

 (
%

)

MCO Highmark BCBS HPUOV Other Modeled

Figure 14: Estimated effects on premiums by insurer for Highmark BCBS (red), HPUOV
(green), and the other modeled insurers (blue). Among the other modeled insurers, only
Carelink and Aetna have large payment effects, and those effects are reduced after 2012 (see
Figure 6).
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Figure 15: Counterfactual changes in commercially insured hospital spending from a one-
percentage-point annual reduction in Medicare benchmark prices under a forward-looking
(red) and myopic (blue) bargaining model. The dashed line indicates an 0.20 percentage
point annual reduction in spending starting in 2009.
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Figure 16: Counterfactual changes in commercially insured hospital spending from the coun-
terfactual restriction on list prices under the estimated forward-looking (red) and myopic
(blue) bargaining models.
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B Additional Literature

There is a long literature explicitly using the Kalai bargaining solution outside vertical

markets. The Kalai proportional bargaining solution or similar proportional solution con-

cepts have has been applied to study liquidity constraints in monetary economics (Borağan

Aruoba et al., 2007, Lagos et al., 2017, Hu and Rocheteau, 2020, Duffy et al., 2021), in social

choice theory (Myerson, 1981), and occasionally in labor economics (Sestini, 1999, Jacquet

et al., 2014). The Kalai proportional bargaining solution has been critiqued as not being

scale invariant (what I sometimes call “scale varying” for concision), so that it can only be

microfounded through von Neumann-Morgenstern utility if bargainers care about outcomes

besides the utility being divided (Serrano, 2005). Evidence from the lab suggests the Kalai

proportional solution may be more accurate in monetary bargaining when the two disagree

and utility can be expressed in dollars (Nydegger and Owen, 1974, Duffy et al., 2021). An-

dreoni and Bernheim (2009) argue that negotiators often care about being perceived as fair.

There is also a literature that uses bargaining solutions with the same predictions as Kalai

proportional bargaining in games that are transferable utility (TU). The theoretical single-

period-contract Nash-in-Nash literature and the empirical literature on coalitional bargaining

with more than two parties to agreements typically studies TU games in which participants

have access to zero-sum utility transfers (Lee and Fong, 2013, Collard-Wexler et al., 2019,

Ho and Lee, 2019, Yu and Waehrer, 2019, Galichon et al., 2019). Under these games, the

Nash and Kalai proportional bargaining solutions coincide. I discuss my application of the

Kalai proportional bargaining solution further in Appendix D.2.

There is other relevant work on vertical market bargaining. Davidson (1988) introduced

the Nash-in-Nash solution for multiunit bargaining between many employers and many in-

surers at roughly the same time as Horn and Wolinsky (1988). To my limited knowledge,

the multiunit bargaining literature generally models bargaining as static, although Hermo

(2024) is an exception. There is a theoretical in industrial organization on overlapping con-

tracts in triangular markets (De Fraja, 1993, Bárcena-Ruiz and Casado-Izaga, 2008, Do and

Miklós-Thal, 2022). Such work is highly stylized and inapplicable for empirical markets like

West Virginia with many asymmetric firms. Note also that Lee et al. (2021) refer to the

mechanism I call spillovers as contracting externalities.

There is an important relevant applied dynamic bargaining literature that studies search

on the job. In the associated models, contracts formed at the start of employment affect the

subsequent path of wages. Early examples include Diamond and Maskin (1979), Diamond

(1982). Shimer (2006) pointed out that when workers cannot fully leverage their employer

when considering changing firms, then higher wages can prevent a worker from leaving to a
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less-productive firm, the bargaining utility set can be nonconvex, and the Nash bargaining

approach may not generate unique contracts absent randomization may be nonunique. As

a result, the empirical search-on-the-job literature has used models in which initial wages

do not affect the path of employment (Cahuc et al., 2006, Bagger et al., 2014) and has

generally assumed transferable utility (Bilal et al., 2022, Gottfries, 2022). In the associated

applied models, the Nash and Kalai proportional bargaining solutions agree. Jarosch et al.

(2019) independently discovered the implications of path-invariance of zero-sum bargains

in a special case of their model of post-disagreement threats. (Similar results were found

for a stationary vertical market by Shapiro (2021).) The TU search-on-the-job approach

is inapplicable to vertical markets with asymmetric and time-varying spillovers. Not all

search models can be viewed as using Kalai proportional bargaining solution. In more recent

work, Gottfries (2022) proposes a search model that nests the TU case, but allows for NTU

bargaining. Gertler and Trigari (2009) propose a model of staggered firm Nash bargaining

over multiperiod wages, in which wages reset (and have no subsequent effect) after the next

bargain, workers have quasilinear utility, and the firm has a linear and known externality

on wages paid to employees hired before the next bargain. They show that this case yields

a tractable solution incorporating the externality and calibrate the model to monthly jobs

data. That approach is applied to an empirical setting with overlapping contracts in Gertler

et al. (2008). However, in search on the job, overlapping contracts interact through aggregate

market states rather than based on heterogenous substitution patterns.

This paper’s counterfactual caps on hospital list prices and increases to Medicare re-

imbursement are relevant to the ongoing literature on payment reform. Proposals around

Medicare reimbursement reform have generally focused on the direct payments to hospitals

(AHA, 2022). I focus on the effects on Medicare’s role as a benchmark in private insurer ne-

gotiations. Clemens and Gottlieb (2017) point out that Medicare can also be relevant to the

outside option for capacity-constrained physicians. Clemens et al. (2017)’s descriptive anal-

ysis of Texas BCBS 2010 claims suggests Medicare may play a similar role as a benchmark

for negotiated physician payments.

There are a set of proposals that argue for list price caps, related to the list price growth

caps I consider. These proposals generally are based on one of two static motivations: either

to cap the highest negotiated payments (Liu et al., 2021, Chernew et al., 2020) or to limit

hospitals’ ability to exert leverage through out-of-network payments from disagreeing insurers

(Duffy et al., 2020, Prager and Tilipman, 2022, Berenson and Murray, 2022). Prager and

Tilipman (2022) explicitly model the leverage effect of list prices for outpatient care, a

setting with more common out-of-network care. Fiedler (2020) points out that out-of-network

leverage effects are limited if hospitals can refuse to provide out-of-network care.
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The existence of multiyear hospital–insurer contracts begs the question of why the con-

tracts exist in the first place. Early health insurance plans took the form of either indem-

nity plans without negotiated discounts or hospital-sold prepaid plans that aimed to reduce

marginal costs during the Great Depression. In later years, negotiated discounts can be

viewed as the insurer offering to steer patients towards a given hospital in exchange for the

favorable payment rate,9 with the insurer using the discounts to sell more plans (Morrisey,

2013). Viewed from this framework, hospital–insurer contracts resolve a potential holdup

problem (Goldberg, 1976, MacLeod and Malcomson, 1993). Without a contract, a hospital

could drum up business with the promise of discounts, and then renege and raise prices. In

this framework, multiyear contracts might exist to mitigate holdup created if in-network hos-

pitals become more valuable to consumers through learning. Such dynamic demand processes

or a full analysis of the drivers of contract length are outside the scope of this work.

There is a rich literature in health economics on mechanisms I do not model. As is stan-

dard in this literature that focuses on negotiated prices (Ho and Lee, 2017, Ghili, 2022), I

assume insurer demand is actively chosen and allow insurer demand to be selected only

on observables, which misses any inertia and switching costs (Handel, 2013, Polyakova,

2016, Handel et al., 2019), unmodeled adverse selection on hospital networks (Shepard,

2022), or unmodeled selection on other plan characteristics like cost-sharing (Bundorf et al.,

2012, Einav et al., 2013). Data limitations prevent me from separately modeling self-funded

market incentives (Craig et al., 2021), changes in patient steering through physician inte-

gration (Baker et al., 2016), or variation in individual market insurer entry within rating

areas (Fang and Ko, 2020). I abstract from any effects of negotiated prices on quantities

supplied because consumer cost-sharing at practical inpatient levels has generally limited

effects (Gowrisankaran et al., 2015) and provider incentives run in an offsetting direction

(Clemens and Gottlieb, 2014). The limited effects of cost-sharing may be due to a lack of

price transparency (Brown (2019) finds price transparency effects for more shoppable and

simpler outpatient care) or payments predictably exceeding deductible and stoploss levels

(Ellis et al. (2017) cannot precisely estimate inpatient demand elasticities due to lack of

variation in effective prices). I focus on counterfactuals that allow me to abstract from the

network formation process, but future work could study counterfactuals that change net-

works by combining the multiperiod Kalai proportional approach here with Lee and Fong

(2013)’s model of vertical market network formation or models of vertical market bargain-

ing with exclusion (Ho and Lee, 2019, Liebman, 2022, Ghili, 2022). This paper’s approach

to insurer demand, which identifies the contribution of network quality from variation in

9In practice, inpatient steering is typically achieved by treating a hospital as in-network rather than by
steering between in-network hospitals.
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sales within ACA rating areas, has a nuanced parallel with Tebaldi (2023). Tebaldi employs

individual-level plan choice to identify premium responsiveness from sales variation across

rating areas.

I study West Virginia’s outcomes under a rate review system. Murray and Berenson

(2015) offer an excellent description of the West Virginia and Maryland rate review systems

from the year before the West Virginia system ended. McDonough (1997) has more on the

history of rate review systems generally from after other state systems ended. There is a lit-

erature studying rate review systems more generally — for example, Cromwell (1987), Atkin-

son (2009), Pauly and Town (2012), Diebel and Diebel (2017), Sharfstein et al. (2018b,a),

Roberts et al. (2018a,b,c), and Clemens and Ippolito (2019) — largely with a focus around

changes to Maryland’s rate-setting system in 2014.

This work also touches on several strands of theoretical literature that are outside of its

scope. There is a small and generally theoretical literature on dynamic recursive bargaining

solutions. In that literature, contracts and choices today affect the outcome under the same

bargaining solution in the future. My model is a dynamic recursive bargaining solution. There

is relevant work under specific bargaining solutions in non-vertical settings (e.g. Sorger, 2006,

Hoof, 2018, Flamini, 2020, Dutta, 2021); dynamic foundations of static bargaining solutions

(e.g. Binmore et al., 1986, Stole and Zwiebel, 1996, Coles and Muthoo, 2003, Brügemann

et al., 2018, Collard-Wexler et al., 2019, Backus et al., 2020, Maskin et al., 2021, Dutta,

2022); and relational contracting under potential enforcement and restrictions (Levin, 2003,

Miller and Watson, 2013, Watson et al., 2020, Kostadinov, 2021). “Dynamic bargaining” is

sometimes used to refer to bargaining in settings that change over time rather than bargaining

with contract outcomes that are dynamic (Fuchs and Skrzypacz, 2022), a related concept

that to my knowledge has not been applied in vertical market settings except in dynamic

bargaining models that lead to simultaneous formation of single-period contracts (Lee and

Fong, 2013, Collard-Wexler et al., 2019). It is likely that the price system I describe can be

exactly or approximately viewed as a linear rational expectations system. The corresponding

literature is outside the scope of this work and generally focuses on different properties. (In

the notation of Sims (2002), from my understanding the linear rational expectations literature

must solve for Γ0 and Γ1, whereas I estimate Γ0 and Γ1 from the bargaining model and am

interested in counterfactual changes to Γ0.) I find that forward-looking bargainers reduce

starting prices. There is a related literature on inflation expectations (Taylor, 1980, Calvo,

1983) and capping the inflation of pharmaceutical prices with forward-looking responses in

price setting (Abbott, 1995, Ridley and Zhang, 2017).
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C Additional Discussion

C.1 Data Appendix

The first step of data processing is cleaning the contract reports. I discuss this cleaning

in Dorn (2024). Networks are inferred by calendar year of submission, with missing years

inferred from the closest report breaking ties to previous reports. There is a small amount

of manual network handling. I drop contracts for nonstandard care like psychiatric care, lab

fees, or professional fees. When an insurer reports multiple contracts (for example Highmark

BCBS separately reports their indemnity and PPO contracts), I aggregate payments using

the closest available reported number of discharges where possible. (I take an unweighted

average if I never have estimated number of discharges per contract.) In this paper, I include

First Health contracts as HPUOV contracts based on HPUOV’s description of First Health

as a “strategic partner” (Wayback Machine, 2021).

I focus on the regulated hospitals and treat the remote Critical Access Hospitals (CAHs)

that were deregulated after 2000 as negligible. The state also allowed border hospitals to

keep their contracts private. I use the fiscal year 2016 report to infer list price payment rates

for Weirton Medical Center, and treat the small Williamson Memorial Hospital as equivalent

to a CAH.

The West Virginia bargains for estimation were identified manually. The main source

was reported contract start and end dates in the panel contract dataset, but regulator con-

tract decisions were also used as a supplement. I mitigate the bias introduced by Aetna’s

acquisition of Carelink at the start of 2015 by not including any contracts which lasted into

2016 (under the finite horizon) in bargaining estimation. I identify likely bargains for use in

counterfactuals but not estimation based on remaining occasions on which either a contract

was introduced, a share of charges contract was changed or replaced, a first year after expi-

ration (with a change in discount rates), manual research suggests a change in payments, or

the year after a contract was reported as being expected to expire, so long as the automatic

processing identification does not happen in the last period in which I observe the contract.

I treating the effective date as January 1 (except for one case in which other data suggests

the contract began January 2).

In the inpatient data, I exclude rehab, long-term, and psychiatric hospitals; exclude

newborns, residents of other states, and noncommercially insured patients (but including

public employees who chose HPUOV to align with the fully insured sales data); take the

hospital’s main location from Medicare cost reports; and identify systems that reported

joint contracts based on personal research. I assign patients locations by county geographic
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centroid. I estimate probabilities of patients having misclassified insurance status based on

reported care frequencies where typos seem likely.

I infer diagnosis categories based on Ho (2006)’s classification of ICD-9 codes. The West

Virginia inpatient data lacks ICD-9 codes and only has ICD-10 codes for 59% of discharges,

so I convert the data’s MS-DRG codes to ICD-10 codes using CMS (2020) and then into

ICD-9 codes using NBER (2021). I supplement this conversion with additional research

for common DRG codes this method fails to classify. I drop the 2% of cases for which

the DRG conversion did not yield an ICD code and I did not reach an active category

determination. Where this process maps multiple ICD-9 codes to the same DRG category, I

choose the most common ICD-9 code’s category. I calculate Medicare payment-to-cost ratios

from state uniform financial reports (UFRs) and linearly interpolate payment-to-cost ratios

where missing in the available data.

There are some subtleties to my insurer data. Fully insured sales by insurer and self-

funded sales estimates come from reports like Offices of the Insurance Commissioner (2008,

2016) for the comprehensive market. Insurer sales are aggregated by group code where pos-

sible and outliers are cleaned. In 2008-09, sales were not reported. As a result, I linearly

interpolate the missing lives and inflation-adjusted premiums. I similarly linearly interpolate

the sales estimates for the ERISA (self-funded) market for missing years. I calculate MLRs

from 2011-2018 CMS reports for West Virginia business in the individual, small-group, and

large-group markets. I aggregate MLRs by NAIC company code where available and by

name where NAIC codes are not available and take the numerators and denominators from

the MLR NUMERATOR and MLR DENOMINATOR variables in part 5 (for 2011–13) or

part 3 (for 2014 and later) of the reports. I aggregate medical loss and premium revenue

across insurance products by group code. Inflation rates are calculated using World Bank

CPI inflation over years relative to 2019 from the priceR package: 2017 nominal payments

are inflation-adjusted based on the inflation rates reported for 2017 and 2018.

Hospital demand and ex ante WTP are calculated as follows. I calculate the probability

of any diagnosis in the inpatient data in 2016 conditional on age, assuming each person has

at most one inpatient discharge per year. I then obtain the potential hospitals each Highmark

BCBS patient could have visited and run a weighted logit regression of choice on hospital

and ν characteristics by diagnosis. The regression is weighted to include probability-of-Blue-

Cross-weighted choices at hospitals that misclassified Blue Cross care. I then extrapolate

the estimates to calculate the ex post willingness to pay for every conceivable county-age-

hospital combination conditional on diagnosis and aggregate the measure into an ex ante

WTP measure for every hospital-insurer-age-location-year combination. The WTP measure
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is calculated as follows:

WTPj,k,c =
∑
ℓ

P(Diagnosis ℓ | Age group k) log

∑
h∈GM

j

exp(uH
c,h,ℓ)

 ,

where the uc,h,ℓ ex ante hospital utility to a consumer in county c with diagnosis ℓ is from

the hospital choice model.

Insurer demand estimation is an involved process involving substantial data cleaning for

2016 alone. I first estimate insurer sales based on the fraction of commercially insured inpa-

tient diagnoses from an age group in a county in the inpatient data. The county commercially

insured population is taken as the Census intercensal population estimate multiplied by the

state estimated fraction of age group with commercial insurance in the inpatient data. I

then adjust the inpatient data to ensure every insurer has at least one estimated sale per

age-county (taking the needed population from other sales estimates proportionally) and

then include non-Highmark (other state) Blue Cross in the outside option. I infer state-level

insurer sales in the self-funded market in 2016 for Aetna, Highmark BCBS, and HPUOV

based on the difference between state-level sales estimates and state-level fully insured sales.

I extrapolated self-funded sales for the two insurers not identified in the inpatient data,

Cigna and UnitedHealth, by assuming the sales ratio between the markets is equal to the

median estimated ratio. I scale down estimated sales to insure the modeled insurers never

exceed 85% of a county-age group’s estimated sales individually or exceed 90% in aggregate.

Once sales are estimated, I estimate insurer demand with an outer loop–inner loop algo-

rithm. I An outer loop proposes Cigna and UnitedHealth δ̃M fixed effects (including state-

level premiums) and an inner loop produces county-age-insurer implied values of γkWTPk+ξ

to fit age-insurer-county ales estimates for the modeled insurers. I then iteratively update

the Cigna and UnitedHealth fixed effects based on the current WTP coefficient estimates

until conversion. The WTP coefficients are calculated by market-size-weighted regression

of γkWTPk + ξ (inferred from 2016 sales estimates) on WTPk (from hospital demand and

sickness probabilities). To calculate pre-2016 demand, I calculate pre-2016 WTP in util-

ity by insurer, county, and age. I solve for changes to state-level insurer value (inclusive of

state-level premiums) to match state-level sales after adjusting for county-level population

changes and ASO market size changes changes. I assume that Carelink’s ξ values before its

acquisition by Aetna at the end of 2014 were equal to Aetna’s values in those same markets.

For bargaining, I estimate the effect of insurer network on hospital and insurer sales as

follows. I predict sales under both the observed networks and under counterfactual networks

that drop the insurer–system pair at the observed premiums. (Premium changes would be
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measured in PayIRT , which estimation currently sets to zero.) I measure the effects for a

bargain year as a weighted average of calendar years: if a bargain began 3/4 of the way

through 2010, then the first year of gains from trade under the bargain will be a weighted

average of 1/4 of the gains from 2010 and 3/4 of the gains from 2011. I calculate the inputs

to gains from trade, like the change in hospital costs, for the bargaining estimator. For

calculating τij hospital heterogeneity, I calculate hospital costs incurred in 2006 as the sum

of reported list prices multiplied by the estimated cost-to-charge ratio. I calculate demand

estimates from the estimated models to mitigate reporting endogeneity.

The bargaining optimization proceeds as follows. For constructing τij, I normalize log

hospital system size by the mean log system size in bargaining to report τj at the mean. The

hospital groups in the price instruments Zp are chosen to group hospitals by approximate

size while ensuring a reasonable number of bargains for each hospital group: the hospitals are

first ordered by the quantity of net present value realized payments in estimation bargains

if β were equal to 0.8, and then split into six groups based on quantiles of payments taken

to the power of 0.3, a quantity which was chosen to balance information with group size.

Bargaining parameters are optimized over a simple moment weighting that tries to make

the scales roughly comparable across moments: it weights MLR squared moments by 105

and normalized payment squared moments by the average net present value payment if β

were equal to 0.8 (with the ω-style denominator normalization) by the relevant hospital

group or insurer. The optimization attempts to re-optimize 10 times before returning the

estimated parameters. Standard errors are calculated by bootstrap by resampling inpatient

cases and state-level insurance choices 100 times. The bootstrapped confidence intervals for

counterfactuals take the estimated demand functions as fixed and incorporate the uncertainty

in bargaining parameters.

The payment residual Appendix Figures 7, 9, and 10 are constructed as follows. The

validation in Appendix Figure 7 scales the initial payment rate at the level needed to match

the given model’s prediction perfectly in net present value terms. This approach intuitively

corresponds to holding benchmark price increases constant. In Appendix Figures 9 and 10,

I take the marginal effect of a dollar negotiated under a contract on each future contract in

the model and then evaluate the change in net present value profits over the finite horizon.

The counterfactual calculation process is as follows. I take the estimated τ̂ij from the

relevant bargaining models, calculate payment multiples to infer the realized counterfactual

ratio of starting price to net present value payment, and add 2016 data based on 2015 for

computing counterfactual effects on late inferred bargains. There is some further data han-

dling around the Aetna-Carelink acquisition at Davis Medical Center, which had a contract

with Carelink but not Aetna before the acquisition. On the rare occasion that a midyear ne-
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gotiation led to a change of benchmark, I infer the smaller starting price, which increases the

forward-looking offsets slightly. I construct realized price transition matrices and matrices of

the ex post effect of future prices on bargained prices, calculate the realized residual (includ-

ing demand-driven components of gains from trade) which is held fixed in counterfactuals,

confirm that geometric sum estimates of effects would converge, calculate counterfactuals by

matrix inversion, and calculate some summary statistics for later analysis.

The implementation of counterfactuals involves substantial data cleaning. I calculate

when contract terms were changed under a modeled or inferred bargain. Counterfactual prices

are adjusted at the start the year of negotiation or inferred change. Negotiations inferred

from an expected expiration date past the final contract report are implemented at the start

of the next calendar year to allow for potential roll-over. There is further data cleaning,

for example ensuring that new bargains are not inferred during years that are a part of an

estimation sample bargain, ensuring inferred benchmark choice by year is consistent with the

inferred negotiation dates around the Aetna/Carelink acquisition, and holding fixed some

small hospitals that did not provide inpatient data in 2016 that was used to estimate hospital

demand. There is substantial further data cleaning for the list price capping counterfactual

that I discuss in Appendix C.5.

I estimate back-of-the-envelope downstream premium effects based on Ho (2006)’s esti-

mated own-price elasticity. I calibrate a coefficient on inflation-adjusted premiums to match

the estimated average own-price elasticity of -1.4. I solve for the wedge in insurer-year

marginal cost needed to make realized premiums optimal under simultaneous annual Nash-

Bertrand premium-setting. I then find the new equilibrium premiums under that change

in insurer-year marginal cost and the new predicted negotiated premiums, inclusive of any

patient reallocation in response to the new premiums. I do not model how the increased

premiums further increase the negotiated prices.

C.2 Additional Descriptive Statistics

I also present descriptive statistics on the underlying hospitals and insurers. Figure 17

presents the share of reported hospital revenue and costs accounted for by various sources for

West Virginia hospitals over time. Private care typically represented 45% of revenue on only

around 25% of costs, and private care became increasingly important to profitability in later

years. Outpatient care was a larger share of hospital care in West Virginia than other states,

likely reflecting the list price capping system’s incentives (Murray and Berenson, 2015).

The largest hospital referral regions (HRRs) in West Virginia are the Charleston re-

gion, the Morgantown region, the Huntington region, and parts of the Pittsburgh region.
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Figure 17: Percentage of hospital reported net revenue (left) and costs (right) across various
payment sources and inpatient versus outpatient care.

Charleston is the state capitol and contains the state’s largest hospital, CAMC (22.1% of

2016 nongovernmental revenue). The Morgantown region contains the main campus of West

Virginia University and the flagships of both the WVU Health system (25.5% including

jointly reporting affiliates in other regions) and the Mon Health system (5.7% including affil-

iates). Huntington borders Ohio and is near Ashland, Kentucky; the region contains Cabell

Huntington (14.3%) and Saint Mary’s (8.5%) hospitals which merged in 2018 after my study

period ends. A few hospitals are in the state’s northern panhandle like Wheeling Hospital

(0.5%) in the Pittsburgh HRR. Small parts of southeastern West Virginia are in Virginia

HRRs.

The estimated market shares of modeled insurers over time are presented in Appendix

Figure 18. Highmark BCBS generally controlled half of the state insurance market. I also

study the national insurers Aetna, Cigna, and UnitedHealth, the regional for-profit Carelink

which was acquired by Aetna at the end of 2014, and the nonprofit HPUOV. Humana was

present in West Virginia but was smaller than the insurers I do use in 2016 and is not

identified in the inpatient data. I also summarize insurer sales in the fully insured market,

in which I have complete data, in Appendix Figure 19. There are many fewer outside option

sales in the fully insured market, which is consistent with my inclusion of insurers based

on their size in the fully insured market. Altogether, I estimate that 3.5% of fully-insured

consumers and 40% of all insured consumers were enrolled in the outside option of smaller

insurers I do not actively model.

I plot the estimated insurer spending per life (including inpatient and noninpatient costs)

in Appendix Figure 20. Cigna has some of the highest costs, consistent with their higher
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Figure 18: Estimated percent of commercial insurance market covered by each modeled in-
surer; the remaining share is the outside option of smaller insurers. Aetna grew substantially
after its acquisition of Carelink closed at the start of 2015. Highmark BCBS was generally
the largest insurer and gained market share in the era I study.

premiums (Appendix Figure 21). HPUOV has a more regional network and lower costs,

which is seen in lower premiums.

Insurer market shares were correlated with network strength. I plot estimated insurer

market shares by county for Highmark BCBS and HPUOV in Appendix Figure 22. Highmark

BCBS generally has large sales in all of the state. Conversely, HPUOV is a major player only

in those areas where it had a strong network (Appendix Figure 23), especially the state’s

northern panhandle.

Table 9 summarizes the scale of hospital–insurer years for modeled insurers and for years

used in bargaining. Estimation contracts were on average more than twice as large as the

average year of data, had a lower average markup over reported costs, and were more likely

to be prospective than the average contract, all of which are consistent with larger insurers

negotiating more often. Average markups above reported costs are 102% for all contract

years (i.e. average payments were 202% of reported costs), lower than the 135% reported

nationally in 2019 (Whaley et al., 2022) and potentially representing the larger modeled

insurers obtaining more favorable payment rates.

Table 10 summarizes the diversity of firms in the data. It presents counts of the number

of hospitals, hospital systems, and insurers in the underlying contract data, in the set of

cleaned negotiations used for estimation, and the set of imputed negotiations that lack clean

end dates. Altogether I have 1,610 hospital system-insurer years, with 30 hospital systems

representing 35 hospitals. (A few hospitals were acquired in the middle of my data.) Almost

every hospital and hospital system was included in at least one of the 63 bargains included
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Figure 19: Insurer share of fully insured lives (left) and premiums (right) by year from
Offices of the Insurance Commissioner (2008, 2016) Data excludes estimated ERISA/self-
insured sales which I infer from inpatient data.

in parameter estimation, and a similar result holds for the 133 bargains I impute for the

purposes of constructing counterfactuals.

I summarize the number of bargains used in estimation per hospital in Appendix Figure 24

and the number of bargains per insurer in Figure 25. Most payments were at hospitals that

included in either four (CAMC) or six (the WVU Health System) estimation bargains.

Highmark BCBS accounted for more than half of contracts used in model estimation and a

substantially larger fraction of payments.

C.3 Discussion of Cooper et al.’s Work on Prospective Contracts

This work owes a tremendous debt to Cooper et al. (2019). In this section, I discuss how

their work on prospective contracts relates to my analysis.

Cooper et al. (2019) estimate 74% of large for-profit insurers’ prospective contract cases

are paid as a fixed markup over Medicare and find that Medicare benchmarks are associ-

ated with larger hospitals. Negotiations of prospective contracts in West Virginia were more

likely and more important at larger hospitals, both of which are associated with Medicare

benchmark usage in Cooper et al. (2019)’s analysis. Reinhardt (2006) also claims that het-

erogeneous DRG weights were more typical. I cannot directly compare payment schemes in

West Virginia to Medicare reimbursements without access to claims or pricing data by in-

surer, but as mentioned in footnote 7, Highmark BCBS often used customized DRG weights

in inpatient prices disclosed after my dataset ended, but used Medicare rates directly in

outpatient calculations at the start of the era I study.
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Figure 20: Estimated medical costs (including noninpatient costs and hospital payments) by
year for each insurer I model.

I do not have service-level price disclosures in the era I look at or reliable measures of

Highmark BCBS price increases during the post-2021 price disclosure era. I therefore proceed

in my main analysis assuming that Highmark BCBS DRG weight increases tracked Medicare

payments whether Highmark directly used Medicare weights or used customized weights in

the era I study. My analysis can also be interpreted as a counterfactual in which Highmark

BCBS payment rates were required to increase one percentage point faster annually than in

the status quo, regardless of how the payments were calculated. The choice of benchmark only

enters the bargaining model through the realized prices. The distinction between Medicare

as a benchmark and Medicare-based benchmarks with heterogeneous weights does matter

to comparing services (that I aggregate into a generic unit of care) and the interpretation of

the counterfactual for policy purposes.

Cooper et al. also argue that Medicare-benchmarked contracts were likely to be boiler-

plate take it or leave it offers. Cooper et al. do not directly measure boilerplate usage, but

large insurers often make such offers to physicians (Abbey, 2012) and Highmark BCBS used

shared markups over Medicare for outpatient care at some hospitals (Highmark West Vir-

ginia, 2011). That said, stakeholders did not recall boilerplate Highmark BCBS contracts, I

have found qualitatively that Highmark BCBS prices disclosed under post-2021 regulations

are often calculated as hospital-specific markups over a shared diagnosis-based schedule,

and Highmark BCBS contracts were typically implemented at different times (Figure 1). I

therefore conclude the use of boilerplate contracts in West Virginia was likely limited.
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Figure 21: Insurer reported average premiums per life by year in 2019 dollars. Whereas
Highmark BCBS had the largest networks, it was not an especially high-premium option.
Cigna appeared to be especially focused on the large-group market and reported higher
premiums than the other insurers in 2010-2015.

C.4 Caveats and Limitations

My hospital demand model abstracts from various features to focus on price-setting.

Insurers can differ systematically and between plans based on cost-sharing and can put

hospitals in separate tiers, but as discussed in Appendix B, the effects of inpatient cost-

sharing at common American levels are generally small. I assume 2016 hospital demand

was equal to previous hospital demand and as a result do not capture historical hospital

investment or changes in patient steering through physician integration. Discussions with

stakeholders suggest hospital perceptions were mostly time-invariant. I do not model separate

hospital demand by sex, which leads to less precision and could introduce bias by missing

premium discrimination before 2014. I do not capture any supply incentives introduced by

the choice between prospective Medicare-based payments (which pay based on diagnosis)

and list-price-based payments (which pay based on services) or the level of prices, though I

hold benchmark choice constant in counterfactuals.

I only model hospital demand by West Virginia residents for West Virginia hospitals.

Some degree of state bias at borders is inevitable when data ends at state lines that real

humans can cross, and I likely miss some competition in the state’s northern panhandle

(due to the proximity of Pittsburgh area hospitals), eastern panhandle (due to the proximity

of larger cities in Maryland and Virginia), in Wheeling (due to the proximity of East Ohio

Regional Hospital in Ohio), in Huntington (due to the proximity of King’s Daughters hospital

in Kentucky), and for the Health Plan of the Upper Ohio Valley (which had a comparable
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Figure 22: Percent of estimated 2016 commercial sales by county for Highmark BCBS (left)
and HPUOV (right).

line of business in Ohio).

I abstract away from some small potential responses to dropping a contract. I assume

there was no out-of-network care by insured patients in West Virginia. Out-of-network care

is more common for outpatient care, but can happen for emergency inpatient care and might

have become more common if a desirable hospital left an insurer’s network. I model consumer

substitution to small rural critical access hospitals in response to an insurer dropping a

modeled hospital, but treat those payments (which by construction are small) as zero.

The premium data is limited relative to other settings. Large-group premiums were not

regulated by the ACA and could reflect different age-based price discrimination or idiosyn-

cratic rating areas than in the ACA-regulated market. It is possible for there to be an

unmodeled interaction of age-based premiums with market area that is not captured by

market-insurer fixed effects; residual correlation of outpatient and inpatient networks; un-

modeled heterogeneity in Cigna, UnitedHealth, and small insurer quality across rating areas;

variation in insurer entry in the individual market within rating areas; and variation within

rating area in the self-insured market. Aetna premiums in 2015 and 2016 may be mismeasured

due to misalignment of premium payments and insurance dates after the insurer acquired

Carelink in 2015. I only observe premiums annually. Intrayear premium-setting could be

accommodated in the model with appropriate data.

My insurer demand model is highly stylized. I do not have data on choices by family
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Table 9: Scale-related summary statistics for all contract years (Contract Data) and con-
tract years with a bargain used in bargaining model estimation after cleaning (“Estimation
Bargains”). Markups are the ratio of real payments to hospital reported costs. Revenue
measures reflect model estimates to interpolate small contracts and pre-2011 sales. Negative
markups correspond to a few contracts with small hospitals that made up for negative inpa-
tient markups with outpatient profit.

Data Measure mean min p10 p25 p50 p75 p90 max
Contract Data Payments ($M) 2.38 0.00 0.01 0.04 0.23 1.19 4.65 128.16
Contract Data List Payment ($M) 2.94 0.00 0.01 0.05 0.30 1.70 5.78 136.34
Contract Data True:List Payment 0.81 0.22 0.49 0.75 0.90 0.95 0.95 0.99
Contract Data Markup 1.02 -0.46 0.16 0.75 1.05 1.33 1.67 2.65
Estimation Bargains Initial Payments ($M) 5.26 0.03 0.06 0.18 0.65 5.14 11.21 69.42
Estimation Bargains Initial List Payment ($M) 6.50 0.03 0.09 0.31 1.44 6.58 14.75 86.58
Estimation Bargains Initial True:List Payment 0.73 0.30 0.44 0.59 0.80 0.89 0.94 0.99
Estimation Bargains Initial Markup 0.73 -0.27 0.00 0.38 0.76 1.08 1.39 1.71
Estimation Bargains Avg. True:List Payment 0.72 0.31 0.41 0.59 0.78 0.89 0.94 0.99
Estimation Bargains NPV Payment ($M) 20.15 0.05 0.17 0.53 3.03 17.40 50.06 305.45
Estimation Bargains Prospective 0.52 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Estimation Bargains Prospective (Wtd.) 0.60 0.00 0.00 0.00 0.01 0.30 1.42 8.23

Table 10: Count statistics for all hospital–insurer years with modeled insurers (Contract
Data), hospital-insure-years used in bargaining estimation (Estimation Bargains), and
hospital-insurer-years for imputed bargains used in counterfactuals but not in estimation
due to unreliable formation dates.

Data Hospitals Hosp. Systems MCOs System-MCO Pairs System-MCO Years Bargain Count
Modeled Contracts 35 30 6 159 1482
Estimation Bargains 32 27 6 53 289 63
Imputed Bargains 32 29 6 70 326 133

or by employer, so I model the reduced-form selection of insurance by individual based on

individual diagnoses probabilities. As discussed in Appendix B, the model of plan choice

allows selection only on observables and I treat self-funded and fully insured plans as equally

profitable to insurers despite their different business practices. I do not precisely measure

outside options across multiple insurers due to lack of identifiers of small insurers. I also

do not model the outside option of no insurance or how insurance rates might vary across

different areas in West Virginia. I do not model “BlueCard” incentives created by Blue

Cross pooling networks: in a border hospital, part of the hospital’s value of contracting

with Highmark Blue Cross might include the value of additional consumers from CareFirst

(Maryland and Virginia) and Anthem (Kentucky and parts of Ohio) Blue Cross in a way

that Highmark does not value. There also may be asymmetric value created in other states,

but the insurers I model are present on the other sides of West Virginia’s more populous

Ohio and Pennsylvania borders. That said, the key goal of my model is accurately capturing

dynamic bargaining incentives, so the largest concerns reflect any unmodeled changes in
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these incentives over time during the era I study.

I capture benchmark usage imperfectly. Both one-off repeated discounts and one-off

round-number discounts can reflect coincidence or typographical errors, so each imputation

approach has tradeoffs. I generate similar estimated benchmark usage whether I use my main

definition or alternatively infer share of charges contracts from round-number discounts. I

summarize the concordance across measures in Appendix Figure 26. Both approaches treat

as fully prospective any contracts that were benchmarked to list prices with different dis-

counts within inpatient care, which may have included a few Highmark BCBS contracts in

early years of my data (Rivard, 2010); any use of per diems for subsets of care like labor

cases (Weber et al., 2019); or any use of list prices in outlier payments.

My stylized approach to hospital pricing is standard but abstracts from the relative

prices of services. For example, insurers could use list prices for different services to price-

discriminate between share of charges payors, though I found no evidence they actually did

so. I assume that units of care are proportional to hospital list prices to align with the

reported contract data. I inflation-adjust based on CPI which is imperfectly aligned with

both hospital care and specific West Virginia conditions. The CPI inflation adjustment may

be particularly problematic for noninpatient costs (η) and hospital costs (c), with offsetting

effects. It is unclear how these offsetting issues would bias estimates of the patience parameter

β, if at all.

I treat benchmark prices as stylized prices per unit of care and treat them as updated

annually. It is standard in this literature to aggregate multiple services to a generic unit of

care. Firms could apply separate multiples to different care aggregates within a contract,

but the average should be a reasonable summary statistic. Firms could commit to time-

varying multiples, but to my knowledge they rarely (if ever) do so in practice. List price

multiples are theoretically bounded above by one, but generally list prices are intentionally

set far above what any contract could reach. I abstract from some other roles of benchmark

prices to focus on price negotiation dynamics. I discuss these other mechanisms further in

Appendix B. I do not model chargemaster and Medicare timing within a calendar year. List

prices governed by the chargemaster could be updated at frequencies other than annually,

though such higher frequencies are not standard (Reinhardt, 2006, Tompkins et al., 2006,

Jahn, 2017). In principle, chargemasters can be used to price discriminate among insurers

that use list prices as a benchmark, but I found no indication that hospitals do so (Reinhardt,

2006, Abbey, 2012, Kidder, 2013).

The model abstracts from many potential aspects of bargaining. I apply the Kalai pro-

portional bargaining solution, which I discuss further in Appendix D.2.3. I impose a finite

horizon model under the view that it is part of an increasingly long-term approximation to a
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true infinite horizon model. The finite horizon is an approximation — for example, it might

be more appropriate to place extra weight on the fifth year as a proxy for subsequent profits.

The theoretical arguments deriving estimation moments would not hold if the negotiators

had asymmetric patience parameters, risk aversion, or different expectations of the future.

Whether these sorts of informational differences can be incorporated in dynamic bargaining

is an interesting avenue for future work. It is possible for the bargainers to implicitly or

explicitly bargain over nonprice objects like adjudication processes or cooperation, although

such objects are generally viewed as secondary (Abbey, 2012, Vega, 2013, Gooch, 2019). I

assume that disagreement does not affect subsequent demand functions; disagreement is a

dynamic process that affects consumer inertia which I hope to explore in future work.

The model’s timing abstracts from many real-world subtleties around timing in the ser-

vice of empirical tractability. I model bargaining as succeeding at the start of the day on

which it was accepted by the regulator and ending on an unambiguous day of the year. In

practice, contracts are agreed to before they go into effect and occasionally expired contracts

would remain in place on a short-term basis while negotiations remained ongoing. Short-term

extensions are equivalent to auto-renew contracts in my model, but I will miss extensions

that began and ended between contract reports. Impasse is assumed to affect insurer demand

in a static process throughout the year; insurance contracts with employers and individuals

are reached at staggered times, a process that does not correspond perfectly with this paper’s

static insurer demand model. I attempt to capture annual patience with an annual patience

parameter, using contract dates within a year when estimating the bargaining model but

treating profits as equally profitable within a year, which is a convenient but unrealistic

simplification. For counterfactuals, I simplify prices and treat bargaining as being conducted

at the start of the year to focus on the counterfactual effects at the cost of some precision.

There are also a few other places wherein the bargaining model is currently simplified for

convenience. The bargaining model is estimated with a high-dimensional optimization that

may not reach a global optimum. The estimation procedure is somewhat affect by initial

conditions; most notably, negotiation cost contributions to payments do not always move

much from their initial value of $10,000. I use state-level premiums to calculate insurer gains

from trade, which may introduce some bias from relative age discrimination between insurers.

As discussed, I do not currently estimate an impasse repricing transfer term (with unclear

effect), I hold premiums constant in counterfactuals (with conservative effect), and do not

have the sufficient variation to statistically test a Nash bargaining model (which likely would

produce similar estimates as the model I estimate).

I do not model the network formation process. As argued in the literature referenced in

Appendix B, a frictionless Nash-in-Nash bargaining model rarely speaks persuasively to why
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networks are not complete — for example, an insurer might exclude a hospital to increase

their leverage in other negotiations. In my model, networks are theoretically restricted by

hospital costs and negotiation costs. I do not view those bargaining frictions as a fully

compelling model of network formation. Other disagreement models could be accommodated

by adjusting the impasse repricing transfer term to include other disagreement effects. I focus

on changes to benchmark price increases that are comparable to normal levels of benchmark

price increases. As a result, the counterfactuals would be unlikely to affect network formation

substantially.

There are various limitations on counterfactuals. The one percentage point payment

increase is based on West Virginia data, but a national equivalent might be closer to 0.7

percentage point annual increase. It is possible that my deterministic stance on uncertainty

in counterfactuals introduces bias if the uncertainty over benchmark prices was first-order

relative to the changes that would be incurred in the counterfactual I consider. As mentioned

in Appendix B, I do not model any effects on how much care would be reported or how

hospital investment might change in counterfactuals due to the limited effects of prices

on supply. The set of benchmarks used has changed over time and has shifted towards

prospective payments, making out-of-sample extrapolation unclear but potentially meaning

national effects of Medicare-based benchmark prices would be larger in years after 2015.

West Virginia is a small market, so it is possible that bargaining is less frequent than in

large markets that constitute a lot of, but by no means all of, American hospital care. The

contract data I use is partial in the earliest and latest years, and as a result I may miss some

bargains that were not reported. The downstream estimates of effects on premiums is highly

stylized.

C.5 List Price Counterfactual

I begin the list price capping counterfactual with a state-level guideline: list prices should

be increased by at most 102% plus the positive part of the average Medicare payment change

from the previous year. Medicare attempts to track average costs, so the hope is that two

percentage points of extra capacity will be more than enough to contain idiosyncratic cost

variation.

Where the state financial cost data seems reliable, I pull up to 50% of the allowed increase

towards the hospital’s previous year Medicare payment-to-cost ratio change, with the change

capped at ten percentage points to avoid over-use of potential reporting errors. The hospital

weights are scaled by the square root of previous-year costs, relative to the largest hospital

cost in the previous year. I then set a floor that the previous year’s list price is always
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allowed.

I assume that hospitals attempt to increase their list price to the lower of the real list price

and the regulation’s largest allowed list price. It is possible the regulation would generate

some slight incentive for hospitals to stockpile list price increases, but it seems likely to be

minor where they are already profit maximizing under a corridor constraint. A real-world

implementation would be more complicated: for example, West Virginia’s corridor system

created incentives to shift care towards outpatient care. On the other hand, other states

have lower charge-to-cost ratios, and so may have more scope to reduce payments through

analogous regulations.

C.6 Description of Additional Models

The rows in Appendix Table 8 are as follows. The first row is the main forward-looking

model. The second row does not include the τSize hospital size interaction. The third row

normalizes payments by the average value of
∑

βt. The fourth row estimated hospital costs

as a multiple of list prices rather than calibrating hospital costs. (The estimated multiple is

1.45.) The fifth, sixth, and, seventh rows multiply hospital costs by a fixed scalar. The eighth

row multiplies hospital costs by the hospital’s reported Medicare payment-to-cost ratio to

proxy for the outside option of Medicare patients if hospitals are capacity-constrained. The

ninth row takes η values to fit MLR reports rather than calculating them. The tenth row

multiplies insurer gains from trade by the hospital’s reported share of commercial costs from

inpatient care. The eleventh row fixes β. Rows twelve, thirteen, and fourteen fix τ . Rows

fourteen and fifteen are the only-2015 and myopic bargaining models I present in the main

text’s Table 4. Rows sixteen and seventeen are the only-2015 and myopic bargaining models

without τSize size interactions.

D Additional Theoretical Analysis

This appendix includes a simple model of benchmark price inflation in a triangular mar-

ket (Appendix D.1), a description of the proposed dynamic model relative to the literature’s

static approach (Appendix D.2), a microfoundation for Kalai proportional bargaining in

vertical markets (Appendix D.3), an example showing how ignorable uncertainty can easily

introduce estimation bias under Nash bargaining (Appendix D.4), and proofs of the theoret-

ical claims from this work other than Theorem 1 (Appendix D.6).
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D.1 One Insurer, Two Hospital Model

I illustrate that if a monopolist insurer bargains two-period contracts with two symmet-

ric downstream hospitals, the effect of changes to benchmark price dynamics on payments

depends on the precise timing of negotiations. I describe hospital–insurer negotiation, but

the ideas carry over in a more generic vertical market, in which the insurer is a generic

downstream retailer and hospitals are generic upstream suppliers.

The monopolist insurer sells insurance for $10,000 per life. The insurer will sell 6,000

units of insurance with both hospitals in their network, 4,000 units with one hospital in their

network, and no one will purchase insurance with an empty hospital network. After choosing

insurance, enrollees become patients and distribute evenly among hospitals in the insurer’s

network. The number of patients at a hospital depends on the realized network, so contracts

are over a price per patient rather than a payment directly.

A contract takes the form of a multiple α on the benchmark price per patient that will

remain in place for ℓ periods. The price per unit of care is pb,t and continues to inflate at a

rate of π. I write Ct = (C1t,C2t) for the realized period t contracts, where Cht = (ℓht, pht)

is hospital h’s contract in period t (the number of remaining periods ℓht and the current

period price per patient pht = αhtpb,t). If hospital h fails to agree to a contract in period t, I

write Cht = (0, 0). The insurer and hospital flow profits in terms of insurer demand DM and

hospital patient count DH
h is as follows:

πM(Ct) = DM(Ct)−
∑
h

DH
h (Ct)pht and πH

h (Ct) = DH
h (Ct)pht.

All firms play Markov (memoryless) strategies and optimize net present value profits. In the

interest of clarity I keep most regularity conditions, for example that bargained multiples are

a differentiable functions and that the feasible payoff Pareto frontier is a well-defined convex

curve, implicit in this toy model.

Contracts in this setting have spillovers. Suppose the insurer expects hospital −h will

agree to a multiple α−ht = p−ht/pb,t whether the bargain with hospital h succeeds or fails.

With an agreement, the insurer will earn $60m in premium revenue, pay 3, 000pht to hospital

h, and pay 3, 000p−ht to hospital −h. With a failed bargain with hospital h, the insurer will

earn $40m in premium revenue and pay 4, 000p−ht to hospital −h. The insurer’s gains of

$20m− 3, 000pht + 1, 000p−ht are increasing in the price they will agree to pay hospital −h:

the more the insurer agrees to pay hospital −h, the more the insurer will be willing to pay to

hospital h to divert patients from the more expensive hospital. I write p∗Static = $20, 000 (1−τ)
2+τ

as the unique equilibrium in simultaneous one-period contracting where prices are p∗ht =
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(1− τ)($20m+ 1, 000p−h,t) under both Nash and Kalai proportional bargaining.

Contracts remain in place for two periods. If the firms are myopic and care only about the

current period when bargaining, then the firms reach the same starting prices regardless of

benchmark price increases. The myopic bargained starting price in response to an anticipated

hospital −h starting price of p−ht0 will be pht0 =
1−τ
3,000

($20m+ 1, 000p−ht0). The equilibrium

negotiated multiple will be α∗
ht0

= p∗Static/pb,t0 and offsets the benchmark price level just as

in the monopolist hospital context. If firms myopically and simultaneously bargain in period

t0, the insurer will pay 6, 000p∗Static in period t0 and 6, 000(1 + π)p∗Static in period t0 + 1. If

the benchmark price increase rate π tends to infinity, the insurer may become predictably

insolvent because the myopic bargainers in period t0 did not care about profits in period

t0 + 1. These are unappealing features to require a priori when studying benchmark price

dynamics.

I consider two potential bargaining models and two potential timing assumptions. The

bargaining models are Nash bargaining and Kalai proportional bargaining, both with insurer

bargaining weight τ ∈ [0, 1]. The timing assumptions are good-faith disagreement where

contracts are bargained wherever Pareto-improving and two-period exclusion where contracts

are only bargained at the same time.

I begin with the bargaining solution with simultaneous bargaining.

Proposition 1. Suppose price responses are a (well-defined) linear increasing function of

anticipated or current price, τ ∈ (0, 1), β > 0, and disagreement is followed by either one

or two periods of exclusion followed by a return to contracting. When contracting is simul-

taneous, Nash bargaining produces the net present value payment 3, 000p∗(1 + β(1 + π)) =

(1 − τ) ($20m(1 + β) + 1, 000p−ht(1 + β(1 + π))) if and only if disagreement is followed by

two periods of exclusion. Kalai proportional bargaining produces that net present value pay-

ment whether disagreement is followed by one or two periods of exclusion.

Proof. The proof (like proofs of all other claims in the appendices) can be found in Appendix

D.6.

The intuition from the monopolist context in Section 2 carries through when bargaining is

conducted simultaneously under Kalai proportional bargaining. The simultaneous bargaining

response to an anticipated starting competitor price of p−ht is:

p∗h,Kalai

NPV payment
per starting price︷ ︸︸ ︷

3, 000(1 + β(1 + π)) = (1− τ)

( NPV premium and
enrollment effect︷ ︸︸ ︷
$20m(1 + β) +

NPV price
reinforcement effect︷ ︸︸ ︷

1, 000p−ht(1 + β(1 + π))

)
.
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This net present value payment is the static Nash-in-Nash bargaining solution in net present

value terms.

Dynamic Nash bargaining diverges from static Nash bargaining even in the case where

π = 0 and benchmark prices are constant. If the firms attempt to bargain one period after a

failed agreement in period t0, then the disagreement point bargain in period t0+1 internalizes

the spillovers on the insurer’s payment to hospital −h in period t0+2, as well as the spillovers

from the hospital −h agreed price in period t0 + 2 on the price formed with hospital h in

period t0 +3, and so on. Nash bargainers would choose a disagreement gain from trade split

to favors the insurer with a lower disagreement price. The equilibrium price is reduced by

adding a chance to bargain after disagreement. For empirical practice, such models can easily

generate complex predictions based on complex states with complicated predictions. I find

that in my context, that sort of complicated dynamic Nash bargaining model would likely

be well-approximated by the dynamic Kalai proportional model that I propose.

The intuition from the monopolist context in Section 2 carries through in a more com-

plicated way when firms bargain in alternating periods.

Lemma 1. Under this subsection’s model, the stationary Kalai proportional bargaining start-

ing price when bargaining in alternating periods and one period of exclusion for any disagree-

ment is:

p∗Alt = $20, 000
1− τ

2 + τ

(1 + β) (2 + τ + 4β(1− τ))

(1− τ) (3β (1 + β(1 + π))− (1− β)2(1 + π)) + 3 (1 + β(1 + π))
. (8)

If τ ∈ [0, 1) and β ∈ [0, 1), then the effect of the benchmark price increase rate π on equilib-

rium insurer payments 3, 000(2+π)p∗Alt and net present value payments 3, 000(2+π)p∗Alt/(1−
β) is a strictly increasing function of π given τ and β.

Forward-looking firms offset benchmark price increases even when bargaining in different

periods. As π increases, the denominator of Equation (8) increases and the stationary starting

price falls. However, there are still real effects on payments. Forward-looking firms that

discount future periods respond to benchmark price increases with a smaller price reduction

in period t0 than the corresponding price increase in period t0 + 1. When the other hospital

bargains in period t0 + 1, benchmark prices introduces a double whammy: price spillovers

increase in the now-current period t0 + 1 and the current spillover increase is larger than

the period t0+2 spillover decrease. As a result, benchmark price increases generally increase

equilibrium payments in vertical markets in which contracts are formed at different times.

Similar dynamics are present in a Taylor (1980) model of firm price-setting responses to

anticipated inflation.
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D.2 Comparison to Static Model

I compare the Kalai proportional bargaining model I use to Nash bargaining alterna-

tives. The existing single-period-contract model fails to allow bargainers to respond to the

incentives created by contract dynamics. Whereas dynamic Nash bargaining is an ostensi-

bly natural bargaining model for dynamic contracts, dynamic Nash predictions depend on

precise off-equilibrium timing and diverge from the predictions under Nash bargaining for

single-period contracts. The Kalai proportional bargaining solution I use generates dynamic

predictions that uniquely retain the tractability of the literature’s static model.

D.2.1 The Literature’s Static Model

The “workhorse” model for choosing contracts in vertical markets with spillovers is Nash-

in-Nash bargaining over static contracts that are simultaneously formed in each period

(Collard-Wexler et al., 2019, Bagwell et al., 2020).

Nash-in-Nash bargaining is a model in which contracts reach a Nash equilibrium in Nash

bargains. The Nash equilibrium lens holds fixed the outcome of simultaneous bargains. Nash

bargaining maximizes an asymmetric product of gains from trade relative to the value of a

disagreement point in which no contract is reached.10 In this section, I adapt the notation of

Lee et al. (2021) for the gains from trade for hospital h negotiating with insurer j in period

t:

C∗
hj,t,Nash = argmax

Chj,t

(
GFTH(Chj,t | C−hj,t)

)1−τ (
GFTM(Chj,t | C−hj,t)

)τ
,

where τ ∈ [0, 1] is the insurer’s bargaining weight and GFT (Cht,t | C−hj,t) is the gain in

payoffs by reaching the contract Cht,t relative to reaching the disagreement contract C = ∅.
τ = 1 and τ = 0 correspond to the insurer and hospital, respectively, making take it or leave it

offers. In the interest of clarity I keep most regularity conditions, for example that bargained

multiples are a differentiable functions and that feasible payoffs are convex, implicit in this

discussion.

My bargaining model is a generalization of the Ho and Lee (2017) Nash-in-Nash model to

include dynamic considerations. I add the use of benchmarks and the capacity for contracts

to renew for multiple periods in Stages 1–4, require only some contracts to be bargained

in Stage 3, use a Nash-Bertrand premium setting model to adjust for my lack of employer

premium setting data, include a contract negotiation cost that is paid after a successful

10In a dynamic model, the disagreement point is not uniquely defined because the firms could reach
disagreement through one or both sides vetoing a contract (Miller and Watson, 2013). However, the Markov
strategies is more than sufficient to define a unique disagreement point.
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bargain in Stage 4 flow profits, and allow new contracts to be associated with a chosen

benchmark and expiration. In addition, I describe new contracts as formed through Kalai

proportional rather than Nash bargaining. The two bargaining models are equivalent in the

Ho and Lee (2017) static setting.

Asymmetric Nash bargaining has become the dominant bargaining tool in fields like labor

economics (Haake et al., 2023) and the industrial organization of vertical markets (Lee et al.,

2021). Symmetric (τ = 1/2) Nash bargaining is the only symmetric bargaining solution that

satisfies the axioms of Pareto efficiency, independence of irrelevant alternatives, and scale

invariance (Nash, 1950). Nash bargaining can also be microfounded through alternating offers

models (Binmore et al., 1986).

By taking first-order conditions, the Nash bargaining price splits the joint gains from trade

proportionally to the product of the ratio of bargaining weights and the ratio of marginal

values of the price chosen. Suppose a contract Cht,t can be written as a price phj,t and other

characteristics (in my context, benchmark and length) Bhj,t. Then the Nash bargaining first-

order condition with respect to price is:

GFTM(C∗
hj,t,Nash | C−hj,t)

GFTH(C∗
hj,t,Nash | C−hj,t)

=
τ

1− τ︸ ︷︷ ︸
Ratio of

bargaining weights

−∂GFTM ((phj,t,B
∗
ht,t)|C−hj,t)

∂phj,t
|phj,t=p∗hj,t,Nash

∂GFTH((phj,t,B
∗
ht,t)|C−hj,t)

∂phj,t
|phj,t=p∗hj,t,Nash︸ ︷︷ ︸

Ratio of
marginal values

. (9)

In many models like the Ho and Lee (2017) model I build on, the ratio of marginal values

in the first-order condition (9) is one.

A price paid by an insurer to a hospital has spillovers on how other pairs bargain and

premiums are set. These spillovers are not internalized with single-period contracts, because

all prices and premiums are set simultaneously. When the ratio of marginal values in Equation

(9) is equal to one, the Nash bargaining solution splits gains from trade proportionally to

the Nash bargaining weights:

GFTM((ℓ∗ht,Nash, p
∗
h,Nash) | C−h,t)

GFTH((ℓ∗ht,Nash, p
∗
h,Nash) | C−h,t)

=
τ

1− τ
.

Zero-sum bargains with this property one are often called transferable utility (TU) bargaining

problems. Zero-sum bargaining problems, where the sides have access to a lump-sum transfer,

are common in the vertical market literature (Lee and Fong, 2013, Ho and Lee, 2017, 2019,

Collard-Wexler et al., 2019, Yu and Waehrer, 2019, Vincent, 2020). Other empirical models

have single-period contracts with spillovers on a downstream competition stage that has no
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explicit uncertainty and is typically easy to compute up to a small number of parameters

(Crawford and Yurukoglu, 2012, Grennan, 2013, Gowrisankaran et al., 2015, los Santos et al.,

2018, Yang, 2020, Ellickson et al., 2022). A few theoretical models include dynamic spillovers

either with one-period contracts (Deng et al., 2023) or with take it or leave it offers (Do and

Miklós-Thal, 2022), in which case the Nash and Kalai proportional bargaining solutions

coincide.

It is undesirable to impose a static model when needing to account for contract timing (as

Dorn (2024) argues) or for dynamic questions (like the proposed Medicare reimbursement

reform I study). As I discuss in Section 2, models in which contracts are revised in every

period enable bargainers to complete undo any effects of benchmark price increases. When

contracts are truly formed for multiple periods, firms can undo the effects of benchmark

price increases in net present value terms but cannot undo the dynamic implications with

fixed multiples. As Appendix D.1 shows, when contract formation is staggered, the resulting

dynamic process can lead benchmark payment reforms to have real effects on spending.

D.2.2 The Literature’s Static Model Is Inconvenient for Dynamic Questions

While dynamic Nash bargaining is an ostensibly natural extension of static Nash bar-

gaining to dynamic bargaining settings, dynamic Nash predictions depend on precise off-

equilibrium timing and diverge from static Nash predictions.

The most immediate extension of the static model to dynamic bargaining questions would

be myopic bargaining. A contract negotiated today for five years will have spillovers on other

bargains conducted in the next four years. When firms are myopic and do not care about

future periods, firms do not care to internalize their spillovers on future bargains and still

think about bargaining for one period at a time. As I show in Section 2, myopic assumptions

applied to forward-looking bargainers would lead to overestimating the effect of interest

(Section 2). It is undesirable to require myopia a priori for dynamic questions.

Forward-looking Nash bargainers must internalize the effect of bargained prices when con-

tracts are formed at different times. As demonstrated in Section 4.1, contracts are multiyear

and contract formation is staggered rather than bargained simultaneously. A forward-looking

bargainer will care about how their chosen contract affects future terms. When bargains have

spillovers on future contracts, forward-looking Nash bargainers internalize those spillovers.

The ratio of marginal values in Equation (9) is quickly disturbed when firms internalize

spillovers. Imagine insurer j and hospital h Nash bargain knowing their price will affect

how the insurer bargains with hospital −h in the future. The ratio of marginal values and

bargaining predictions would depend on how the marginal hospital h price affects future

hospital −h prices. The bargaining solution’s predictions would recursively depend on the
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bargaining solution (Sorger, 2006). The recursion can snowball to infinity: hospital −h would

bargain knowing their price would affect a price formed with hospital h, and hospital h

would then bargain knowing their price would affect hospital −h in the future, and so on. In

realistic markets with more than three firms, internalized spillovers can quickly snowball out

of control. These internalized spillovers are unavoidable when forward-looking firms bargain

contracts with overlapping terms.

Dynamic Nash bargaining diverges from static Nash bargaining in subtle ways that de-

pend on precise off-equilibrium timing. Added chances to bargain under impasse with re-

alistic timing will have time-varying spillovers and change the model’s predicted payments.

Even when bargaining is simultaneous in equilibrium, I show in Appendix D.1 that dynamic

Nash bargaining can resemble static Nash bargaining or be unlike static Nash bargaining

depending on the exact timing of when bargaining is attempted under impasse. As I show

in Appendix D.4, even ignorable uncertainty can introduce bias under a dynamic Nash bar-

gaining model.

In this work, I attempt to make progress while avoiding bargaining models that depend on

precise off-equilibrium impasse timing. Ad hoc solutions like assuming knife-edge timing for

tractability may not always be possible and often require the firms to avoid Pareto-improving

contracts. A principled dynamic Nash bargaining approach would likely yield a differential

equation (Coles and Muthoo, 2003) and potentially require a high-dimensional state space.

I propose a dynamic bargaining model that can produce the same insights whether the firms

exclude for one period or two periods. The bargaining solution I use also generalizes static

Nash bargaining, fits researcher intuition, and aligns more closely than Nash bargaining with

empirical results from the lab.

D.2.3 The Dynamic Kalai Proportional Bargaining Solution I Use

I use the Kalai (1977) proportional bargaining solution to generalize the literature’s anal-

ysis of static contracts to dynamic bargaining over multiperiod contracts. The Kalai propor-

tional bargaining solution generates dynamic predictions that uniquely retain the tractability

of the literature’s static model and tractably generalize many natural generalizations of static

Nash.

Kalai proportional bargaining is the bargaining solution that splits gains from trade

proportionally to bargaining weights regardless of the ratio of marginal values:

GFTM(p∗h,Kalai)

GFTH(p∗h,Kalai)
=

τ

1− τ
.

The Kalai proportional bargaining solution is exactly the same as the Nash bargaining so-
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lution if bargaining is TU, as in the Ho and Lee (2017) model I build on. Kalai proportional

bargaining cannot generalize Nash bargaining when the ratio of marginal values differs over

time, for example due to spillovers on future negotiations that change as the future negoti-

ations approach and are passed.

Kalai proportional bargaining is the only bargaining solution that produces the same

predicted payments across off-equilibrium impasse timing assumptions. If firms Kalai pro-

portionally bargain over A relative to a disagreement point bargain B and B involves Kalai

proportionally bargaining relative to C with the same bargaining weights, then the gains

from agreeing to B rather than C are already split proportionally to the firms’ bargaining

weights. The firms can treat the disagreement point as C for the purposes of finding the

equilibrium contract. This prediction invariance is Kalai (1977)’s “step-by-step” and Roth

(1979)’s “path-invariance” properties, but with the logic adapted from static utility to a dy-

namic bargaining game. Kalai and Roth show that this property is unique to the predictions

of Kalai proportional bargaining: similar invariance properties have occasionally been found

for TU dynamic Nash bargaining games (Eberwein, 2001, Jarosch et al., 2019, Shapiro, 2021)

in which Nash and Kalai proportional bargaining coincide.

Kalai proportional bargaining has favorable justifications based on axioms, researcher

intuition, and laboratory evidence. Axiomatically, Kalai proportional bargaining can be de-

rived as the unique solution that replaces the scale invariance Nash assumption with a re-

source monotonicity assumption that Pareto expansions be Pareto improving (Kalai, 1977).

Intuitively, researchers often interpret bargaining concepts using Kalai proportional bargain-

ing (Brügemann et al., 2018, Ghili, 2022). In the lab, Kalai proportional bargaining often

outperforms Nash bargaining (Nydegger and Owen, 1974, Duffy et al., 2021).

I do not endorse Kalai proportional bargaining prescriptively because it is scale varying.

When the scale of utility changes, Kalai proportional bargaining predicts different payments.

Suppose two people symmetrically bargain over 60 chips. If the chips are worth one penny and

the bargainers are quasilinear, then both Nash and Kalai proportional bargaining predict the

players will agree to 30 chips each. If instead the chips are worth two cents to the first player,

Nash bargaining predicts the players will split the chips evenly while Kalai proportional

bargaining predicts the players will split the gains equally by giving the second player 40

chips. Kalai proportional bargaining does a far better job of predicting lab behavior in the

chip game I described (Nydegger and Owen, 1974) and other scale varying games (Duffy

et al., 2021). However, scale varying solution concepts are difficult to microfound (Dagan

and Serrano, 1998). I propose a microfoundation based on Dutta (2012, 2022)’s demands

games in Appendix D.3, but it is not fully compelling for that reason.

Kalai proportional bargaining is subtle in settings in which one side’s optimal contract
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still yields positive gains from trade to their partner. For example, consider a simplified

version of Villas-Boas (2007)’s setting in which a monopolist manufacturer negotiates with

a monopolist retailer over the retailer’s input price without access to side payments. The

manufacturer’s most profitable outcome is a price that leads the retailer to make positive

profit. A Kalai proportional bargaining model that gives the manufacturer all the bargaining

power would predict setting the retailer indifferent to disagreement and lead to a Pareto-

inefficient outcome. Such a bargaining problem violates Kalai (1977)’s assumption that the

set of feasible utilities is comprehensive. Even still, this paper provides useful insights for

such sequential bargaining. If the supplier take-it-or-leave-it offers generate a similar share of

gains from trade over time, my results show that a Kalai proportional model can tractably

approximate the resulting dynamic problem. If such offers generate important variation in

the split of gains from trade, then my results say that it may be difficult to accurately capture

the true dynamic bargaining process within a tractable model.

Whether Kalai proportional bargaining is the correct model or a convenient model is

largely academic in my context. In Appendix Figure 9, I find that Kalai proportional bar-

gaining likely approximates Nash bargaining closely. I therefore leave any potential internally

consistent dynamic scale invariant bargaining model to future work.

D.3 A Microfoundation for Dynamic Kalai Proportional Bargain-

ing

This subsection offers a microfoundation for dynamic Kalai proportional bargaining. The

microfoundation is a demands game with revocation costs based on Dutta (2012) and Dutta

(2022). As opportunities to contract become instantaneous, gains from trade tend to zero

and the bargaining solution tends to an instantaneous (and by extension a discrete) dynamic

Kalai proportional bargaining solution. The game extends Dutta (2012)’s setup to enable

repeated bargaining over small effective gains from trade.

In the model’s equilibrium, all contracts in a period will be reached simultaneously. In

this game, there are two stages at which contracts can be reached: in initial demands and

after conceding. I assume that at the margin, hospitals prefer still higher prices and insurers

prefer lower prices. Under the model, any pure strategy equilibrium with this property leads

to all agreements being reached simultaneously in any given period without conceding. As a

result, the sides hold fixed any contracts that are bargained simultaneously.

I first describe a sequence of demands games in continuous time outside steady state.

I then show that as the frequency of bargaining opportunities tends to infinity, any pure

strategies Markov Perfect equilibrium of the demands game tends to Kalai proportional bar-
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gaining.11 I then show that a corresponding sequence of discrete time bargaining solutions of

the instantaneous bargaining game correspond to the dynamic Kalai proportional bargaining

solution in discrete time.

D.3.1 The Demands Game

The sequence of discretely timed games is indexed by n.

In game n, time runs from t = 0 to infinity. At time t, a contract structure Ct emerges. In

period t, the contract structure which emerges is a set of lengths hospital i-insurer j lengths

ℓijt,(n) and a set of i− j prices pijt,(n) ⊆ P , where P is a closed, convex subset of R.12 If i and
j do not reach a contract, the ℓijt,(n) = pijt,(n) = 0. I write the set of contracts that emerge

as Ct. I assume that at every stage of negotiations, upstream hospitals prefer higher prices

while downstream insurers prefer lower prices. Prices remain in place for the full length of

the contract: for example, lump-sum payments would fit in the model as a price per period

amortized over the contract.

There is no uncertainty. The set of insurer and hospital indices remains the same in every

game. I assume that if i and j contract in period t, the length is the known, exogenous value

ℓ∗ijt,(n).

Timing in period t is as follows:

1. The board of directors of every hospital i and insurer j meet with their delegates, who

simultaneously bargain with every potential partner with whom they do not have an

agreement.

• Hospital delegates and insurer delegates choose a price demand to state publicly.

The demand is chosen to maximize a weighted average of their employer’s net

present value profits and a personal concession cost they face if they agree to a

contract that is worse than their demand. The hospital delegates demand a min-

imum price p
¯
H
Demand

and the insurer delegates demand a maximum price p̄MDemand.

2. The corresponding delegates for each ij pair without a contract in place from the

previous period simultaneously meet with their authorized demands.

11I mainly use the Markov assumption to prevent renegotiation in equilibrium. Without it, the sides could
sustain an equilibrium with painful concessions by punishing forming the same contracts without conces-
sion. Dutta (2022) shows that the Kalai result only requires renegotiation-proof strategies when repeatedly
attempting to bargain over a fixed asset. I might be able to replace Markov strategies with renegotiation-
proof strategies in my setting in a similar way, though renegotiation proofness would be more subtle in the
nonstationary environment I study.

12The game immediately generalizes to other vertical markets by treating hospitals as an upstream market,
insurers as a downstream market, and prices as a real-valued numeraire the sides bargain over.
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• If an ijt pair has jointly feasible demands p
¯
H
ijt,Demand

≤ p̄Mijt,Demand, the delegates

reach a jointly feasible contract by Nash bargaining over firm profits, treating

their demands as disagreement points and taking equilibrium strategies of other

pairs as given.

• If the delegates arrive with jointly infeasible demands, they have the simultaneous

opportunity to concede to the other side’s demands. Conceding means adopting

the other delegate’s demand. Without loss of generality, I write concession costs

in units of employer net present value profits. Conceding has an associated cost

of cHijt,(n)(p
¯
H
Demand

− p̄MDemand) and cHijt,(n)(p
¯
H
Demand

− p̄MDemand). The concession cost

functions are continuous, strictly increasing for positive concessions, equal to zero

and have an infinite right-differentiable at zero, and are lower-bounded by cost

functions with these properties.

3. Each ijt pair without a contract meets simultaneously.

• If the new demands are jointly feasible, they reenter the same joint bargaining

process as in the previous stage.

• If the new demands are jointly infeasible, they do not form a contract.

4. The hospitals and insurers obtain flow profits: vHit (Ct, Rt) = πH
it,(n)(Ct) + rHi,(n)Rijt for

hospital i where rHi is any new contract negotiation cost, and analogously vMjt (Ct, Rt) =

πM
jt,(n)(Ct) + rMj,(n)Rijt for insurer j.

When the delegates arrive with jointly-unachievable demands, they play a one-shot game

with a simultaneous payoff matrix adapted from Dutta and depicted in Appendix Table 11.

In Appendix Table 11, I write the value functions with agreement (at the anticipated con-

cession decisions) as V H and V M and the value with disagreement as V H
D and V M

D . The V

agreement value functions include any effect of the negotiated contract on any other agree-

ments reached through concession. I later show that there is no concession in equilibrium, so

that the relevant value functions are also the value functions at the equilibrium simultaneous

agreements. If concession costs are too high, neither delegate will be willing to concede to a

contract that only improves their employer’s profits slightly. The infinite right-derivative at

zero ensures that if the demands are close enough, then both delegates will prefer to concede

despite the incurred concession cost.
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Table 11: After incompatible demands in Stage 2 (p
¯
H > p̄M), payoffs depending on whether

hospital delegate (rows) and insurer delegate (columns) concedes or sticks to their initial
demands. Table is adapted from Dutta (2022). I omit the ijt subscripts for brevity. p∗ is the
hypothetical Nash bargained price if both delegates concede and the demands are reversed.

Concede (C) Stick (S)

C (V H(p∗)− cH(p
¯
H − p̄M), V M(p∗)− cM(p

¯
H − p̄M)) (V H(p

¯
H)− cH(p

¯
H − p̄M), V M(p

¯
H))

S (V H(p̄M), V M(p̄M)− cM(p
¯
H − p̄M)) (V H

D , V M
D )

The concession costs constrain the contracts that can emerge in equilibrium. Suppose

jointly compatible demands lead to the hospital getting the most favorable deal: a take it or

leave it deal that gives the hospital all surplus and leaves the insurer with their disagreement

value. Consider a subgame in which the insurer deviates and demands a slightly better deal.

The insurer’s delegate will not pay a concession cost to concede to obtain the disagreement

value they could obtain anyway. But if the new demand is close enough, the hospital’s

delegate will prefer to concede rather than lose all the surplus. Extending this logic to lopsided

deals, the concession costs constrain how much surplus each side can obtain. The higher a

side’s concession costs, the better of a deal they guarantee themselves in equilibrium. In the

limit as the game becomes instantaneous and gains from trade tend to zero, the constraint

becomes driven by the derivative of the cost functions at zero.

The particular form of concession costs enables a scale varying solution in the limit. The

concession costs are paid in terms of prices rather than net present value profits. As a result,

constraints in the instantaneous game limit are driven by the ratio of marginal costs alone.

If the ratio of marginal costs changed over time, the solution would be instantaneous but

not discrete Kalai proportional bargaining. If the concession costs were a function of value

conceded, it appears the equilibrium would correspond to Nash bargaining at the margin

in a similar manner to Coles and Muthoo (2003). If the concession costs were borne by the

delegates but set by firms that were indifferent to conceding, then there would be equilibria

with concession and the concession costs might not have any bite. The lower bound rules out

a sequence of cost functions with infinite right-derivatives at zero that tend to irrelevancy.

The model could be generalized in a few directions at the cost of additional notation. I

use Nash bargaining in Stage 2 to be tongue-in-cheek. Any other bargaining solution would

work. I make contract lengths exogenous to ensure that the space of feasible contract values

is convex. The model could likely be extended to enable endogenous contract lengths. Under

this game and Dutta (2022)’s game, a delegate pays the same concession cost whether or not

the other side concedes; in Dutta (2012)’s original game, the concession cost is paid based

on the difference between demanded and realized price, with the same result.
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I now write out value functions for the realized contract state. I assume players follow

Markov strategies, so that value functions only depend on realized contracts and negotiation

costs (i.e. realized contracts and the previous period’s realized contracts). Suppose the players

follow strategies σ̂ which generate period t+1 contracts σ̂t+1(Ct). I define the corresponding

value functions as:

V H
it,(n)(Ct | Ct−1) =

πH
it,(n)(Ct)−

∑
j r

H
i,(n)Rijt + β(n)V

H
it+1,(n)(σ̂t+1(Ct) | Ct)

1− β

V M
it,(n)(Ct | Ct−1) =

πM
jt,(n)(Ct)−

∑
i r

M
j,(n)Rijt + β(n)V

M
jt+1,(n)(σ̂t+1(Ct) | Ct)

1− β
.

In that equation, Rijt is an indicator for ij forming a new contract in period t.

I will make use of the value of ij deviating to a new contract p while holding fixed the

outcome of other bargains. I write these unilateral deviation value functions as V H
ijt(pijt |

σ̂,Ct−1) and V M
ijt (p | σ̂,Ct−1). It is not immediately obvious that these are the relevant

value functions in this bargaining game since in principle the choice of contract could affect

later concession decisions. I show there is no concession in equilibrium so that these are the

relevant value functions.

I will assume some structure on the value functions which I expect to hold in many

vertical market bargaining models.

Assumption 3 (Monotone and differentiable value function). When bargaining in Stage 2

or choosing whether or not to concede in Item 2, hospitals strictly prefer higher prices and

insurers strictly prefer lower prices inclusive of any response through subsequent concession

decisions and negotiations in period t. The expected value functions of a bargained initial

price p at the expected other equilibrium contracts in the same period is written as V (p |
σ̂,Ct−1) and is differentiable with bounded derivatives as follows:

0 < εB ≤
−∂V H

ijt(pijt | σ̂,Ct−1)

∂pijt
,
∂V H

ijt(pijt | σ̂,Ct−1)

∂pijt
≤ B

for uniformly bounding constants ε, B > 0.

Since one side strictly prefers and the other one strictly does not prefer higher prices,

Assumption 3 enables me to write the value concession game as a value-based price concession

game. Assumption 3 could be relaxed to a Lipschitz continuity-type assumption.

The substantive idea of this assumption is that prices have monotonic effects. The first

half that includes downstream effects rules out the delegates choosing to form a contract

through jointly feasible demands in order to sustain an equilibrium in other simultaneous
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demands. Under Assumption 3, if a hospital and insurer arrive with jointly feasible demands,

they could do better by deviating to the other’s demand despite any effects on the down-

stream contracts.

The value function derivative component of Assumption 3 ensures the hold-fixed contract

deviation value functions are differentiable.13 As a result, the value functions are invertible

in bargained prices. For example, if the price domain P includes only weakly positive prices,

then equilibrium hospitals generally prefer strictly higher prices and insurers prefer strictly

lower prices. The property is likely to hold in other settings if which higher prices have

positive spillovers on other prices for appropriately defined price domains P .

Lemma 2. Under Assumption 3, for every game n, subgame Ct−1, triplet ijt without a con-

tract in place under that subgame, and associated equilibrium strategies σ̂(n), there are prices

pHijt,(n),D and pMijt,(n),D that make the hospital and insurer, respectively, indifferent between

agreement at that price and disagreement under the expected contracts formed by other pairs

in equilibrium.

I add an assumption to rule out certain nuisance behavior.

Assumption 4. If hjt do not reach a contract in a period t subgame and ijt do reach a

contract through negotiation after initial jointly-feasible demands, then hnt continue to not

reach a contract if either i or j strengthens their demand.

Assumption 4 rules out a certain edge case in which pairs reach a contract through Nash

bargaining between jointly feasible contracts, but neither side can make a stronger demand

because it would lead to an anticipated contract that changes other pairs’ concession decision.

Without Assumption 4, there is no concession in equilibrium, but the contract outcome may

be driven by the effect on others’ concession decisions in the same period. The content is

minimal if, as in my setting, equilibrium networks are fairly complete.

The following lemma shows that there is no concession in equilibrium. As a result, in any

equilibrium the firms must negotiate over an individual contract in a way that is optimal

taking the outcome of other bargains as fixed. The best deviation over all demands is at

least as good as the best deviation over a single demand.

Lemma 3. Under Assumptions 3 and 4, for every game n with a pure strategy Markov

perfect equilibrium σ̂(n), every subgame contract is formed through equal demands.

13The hold-fixed value functions will be the relevant value functions because there is no concession in
equilibrium and no firm will pay a cost to send a negotiator to predictably fail when contracts are formed
expecting the negotiation to fail.
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I obtain Kalai bargaining strategies as the game tends to instantaneous offers and the

ratio of first marginal costs tends to some proportion.

Assumption 5 (Sequence of PSMPE tending to instantaneous). As the game index n tends

to infinity, bargaining becomes instantaneous in the sense that β(n) → 1 and the effect of

disagreement becomes negligible: max{V H(pMD )−V H(pHD), 0},max{V M(pHD)−V M(pMD ), 0} =

on(1) uniformly in subgames and potential bargainers.

This is plausible in many games: the difference between agreeing to a contract now and

waiting a second and agreeing to essentially the same contract should be essentially nil.

Assumption 6 (First marginal costs tend to proportional). As the game index n tends to in-

finity, the ratio of first marginal costs tend to a fixed proportion in the sense that there are fi-

nite wH
i , w

M
j > 0 and a sequence of δn → 0 such that maxij supx∈(0,max{pMijt,D−pHijt,D,δn}]

c
ijt,(n)M

(x)

c
ijt,(n)H

(x)
−

wH
i

wM
j

= on(1).

The cost proportionality around zero is important to extending the Kalai proportional

results from instantaneous to discrete time. It will be important for the microfoundation that

as the contract shifts under impasse, the ratio of first marginal costs between the hospital

and insurer retain the same proportions. It is not important that the costs be proportional

on a price scale — costs could be formed under a payment scale and I would obtain the same

result.

The following result follows from an adapted version of Dutta (2012)’s argument.

Proposition 2. Suppose Assumptions 3, 4, 5, and 6 hold. Then the bargains tend to an

instantaneous Kalai proportional solution:

sup
Ct−1,Rijt,(n)=1,pMD >pHD

∣∣∣∣∣∣
V M
ijt

(
p̂ijt(Ct−1) | Ĉt−ij,(n)

)
− V M

ijt

(
pMijt,D | Ĉt−ij,(n)

)
V H
ijt

(
p̂ijt(Ct−1) | Ĉt−ij,(n)

)
− V H

ijt

(
pHijt,D | Ĉt−ij,(n)

) − wH
i

wM
j

∣∣∣∣∣∣→n 0.

I offer the following intuition. The concession costs ensure that in every pure strategy

Nash equilibrium, there is no concession and both sides get sufficiently more than their

disagreement value that they cannot guarantee a better outcome by demanding more. As the

game tends to instantaneous, the gains from trade relative to waiting a period become small

and the infinite first marginal costs become binding. The particular form of the constraint

is that the ratio of gains from trade tend to the ratio of first marginal costs. This is a scale

varying solution concept because the concession costs are made based on prices rather than

profits; fixing the ratio of concession costs fixes the relative value of profits.
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D.3.2 Discrete Time Results

The result in Proposition 2 gives a result about disagreeing over an ignorable period of

time. Kalai proportional bargaining has a special path-invariance property that makes this

instantaneous-bargaining limit extend to discrete time.

Proposition 3. Suppose Assumptions 3, 4, 5, and 6 hold. Let Ṽ H
ijt,(n)(0 | Ct−1) and Ṽ M

ijt,(n)(0 |
Ct−1) be the expected values if ij disagree in period t and remain in impasse until the next

period where another pair forms a contract. Suppose the value of agreement relative to impasse

is bounded. Then the bargains tend to an discrete-time Kalai proportional solution:

sup
Ct−1,Rijt,(n)=1,V M (p)>V M (0)

∣∣∣∣∣V
H
ijt,(n)(σ̂(Ct−1))− Ṽ H

ijt,(n)(0 | Ct−1)

V M
ijt,(n)(σ̂(Ct−1))− Ṽ M

ijt,(n)(0 | Ct−1)
− τij

∣∣∣∣∣→n 0.

Proposition 3 justifies using a discrete-timed dynamic Kalai proportional bargaining

model even when real bargaining is conducted in continuous time. This is very useful for

empirical work, where bargaining strategies in continuous time will often be intractable.

Only Kalai proportional bargaining justifies estimating a discrete timed bargaining model

with a continuous timed underlying microfoundation in general nonstationary games. A bar-

gaining solution that generally returns the same contract after adding an additional post-

disagreement chance to bargain must have proportional character (Roth, 1979). As a result,

a comparable result for Nash-in-Nash bargaining would generally yield a differential equation

at the margin (Coles and Muthoo, 2003, O’Neill et al., 2004). Nash-in-Nash bargaining in

nonstationary environments with access to lump-sum transfers might be able to be micro-

founded, but only because Nash bargaining with access to lump-sum transfers has the same

predictions as Kalai proportional bargaining.

D.4 Uncertainty Can Introduce Bias under Nash Bargaining

In this subsection, I use a toy model to show that an empirical researcher must accurately

model uncertainty under Nash bargaining even if uncertainty is completely at random.

Imagine a researcher has access to an infinite number of samples from the following

bargaining process. A fair coin is flipped. If the coin comes up heads, the insurer’s realized

gains relative to the status quo of 0 profits are ĜFT
M
(p) = 30 − p and the hospital’s

realized gains are ĜFT
H
(p). If the coin comes up tails, the insurer’s realized gains are

ĜFT
M
(p) = 10 − p and the insurer’s realized gains are ĜFT

H
(p) = 2p. (To emphasize the

role of uncertainty, in this section, I write the realized gains from trade as ĜFT and the

gains from trade as E[ĜFT ] rather than GFT .)
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After taking first-order conditions, the Nash bargaining solution over price p in terms of

gains from trade E[ĜFT (p)] can be written as

0 = (1− τ)E[ĜFT
M
(p∗)]

∂E[ĜFT
H
(p)]

∂p
|p=p∗ +τE[ĜFT

H
(p∗)]

∂E[ĜFT
M
(p)]

∂p
|p=p∗ .

The game is transferable utility in expectation, so that both the symmetric Nash and Kalai

proportional bargaining solutions yield p∗ = 10.

Note that if price is viewed as a treatment, uncertainty in this process is strongly ignor-

able. The coin toss outcome is completely independent of the price that is chosen. There are

no unobservables that the negotiators use to choose contracts.

Suppose a naive researcher presumes they can form a moment based on the realized

gains. In particular, they exactly observe the realized ĜFT functions. The naive researcher

unfortunately constructs a Nash bargaining moment

0 = E

[
Z

(
(1− τ̂Nash)ĜFT

M
(p)

∂ĜFT
H
(p)

∂p
|p=p∗ +τ̂NashĜFT

H
(p)

∂ĜFT
M
(p)

∂p
|p=p∗

)]
,

where the instrument Z is a dummy. When the coin comes out tails, ĜFT
M
(p∗) = 0. When

the coin comes out heads, ∂ĜFT
H
(p)

∂p
|p=p∗= 0. As a result, the researcher correctly observes

the insurer only gains when the hospital is indifferent to payments, and incorrectly concludes

that τ̂Nash = 0. Conversely, the Kalai proportional bargaining moment will set

0 = E
[
Z
(
(1− τ̂Kalai)ĜFT

M
(p∗)− τ̂KalaiĜFT

H
(p∗)

)]
= E

[
(1− τ̂Kalai) (20− p∗)− τ̂Kalaip∗

]
,

which is satisfied at the correct bargaining weight τ̂Kalai = 1/2.

At a high level, the methodological issue emerges when there can be a correlation between

one side’s gains and the other side’s marginal value based on uncertainty resolved after

the negotiation. The Nash bargaining process that just cares about expected values at the

moment of negotiation. If the correlation is incurred from uncertainty after negotiation, then

a plug-in moment will be biased. If the correlation is observed and incorporated by the

negotiators before bargaining, than a plug-in moment will be unbiased.

D.5 Additional Claims for Proofs

I begin with the scaling that corresponds to cutting period lengths in half in Corollary 1.

Assumption 7. The new game quantities will be denoted by ˜tildes. In the new game, in all
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periods t̃ ≥ t̃0, the demand functions are the same as in the original period t0 + ⌊(t̃− t̃0)/2⌋,
but scaled downwards by 1+

√
β; benchmark prices are unchanged in t0+v for odd-numbered

v and increase the same way as previously for even-numbered v the new discounting rate

is β̃ =
√
β; current contract formed and anticipated lengths are doubled; the time until

the next year start and between year starts is doubled; no further information is revealed

in periods It̃0+v for odd-numbered v but new information and benchmark prices are drawn

from the same conditional distribution (after appropriate translation of definitions) as for the

original period t0 + v/2 for even-numbered v; contracting attempted in period t0 + t is now

attempted in period t̃0+2t; premiums are updated twice as many periods in the future; and

the distribution of future contract responses are unchanged, except contract lengths double.

Lemma 4. Let sa, sb > 0 be putative slopes such that sign(log(sa)) = sign(log(sa)) and

| log(sa)| < | log(sb)|. Then there is an s1 with sign(log(s1)) = sign(log(sa)) and a pair of

games wherein ij bargain under a repeated a bargaining solution f as in Corollary 1 with

no uncertainty, such that if I write G(1),H,Sup for hospital 1’s maximal gains from trade (its

supremum of gains from trade subject to making insurer 1 weakly prefer an agreement in the

original first period of one of the pair), G(1),M,Sup the same but with the roles flipped, and

G(2),H,Sup and G(2),M,Sup are the same but for the game’s split-in-half bargaining opportunity,

then G(1),M,Sup

G(1),H,Sup = s1, in the first of the pair the split-in-half game satisfies G(2),M,Sup

G(2),H,Sup = sa, in

the second of the pair the split-in-half game satisfies G(2),M,Sup

G(2),H,Sup = sb, and the Pareto frontiers

in both the original period 1 and the split-in-half period 2 are linear.

Lemma 5. Let f be a homogeneous and Pareto-optimal bargaining solution. Let S1 be a

bargaining game wherein disagreement point utility is equal to zero and the Pareto fron-

tier intersected with weakly positive gains from trade is the line segment from (0, G1,M) to

(G1,H , 0) for some G1,M , G1,H > 0. Let S2 be a bargaining game that has the same slope, i.e.

the Pareto line segment goes from (0, G2,M) to (G2,M G1,H

G1,M , 0) for some G2,M > 0. Then the

shares of gains from trade under f are equal in both games.

Lemma 6. Let dM , dH ≥ 0 be given. Let S1 be a bargaining game wherein disagreement point

utility is equal to zero and the Pareto frontier intersected with weakly positive gains from trade

is the line segment from (0, G1,M) to (G1,H , 0) for some G1,M , G1,H > 0. Let G2,M and G2,H

be the maximal further gains from trade available to the second and first player while making

the other side weakly better off than dH and dM , respectively. Then G2,M

G2,H = G1,M

G1,H .

Next, I state three lemmas for the microfoundation.

Lemma 7 (Dutta (2012), Proposition 2). Suppose σ̂ is a pure strategy Markov perfect equi-

librium of the game I have described in Proposition 2 under Assumption 3 but not necessarily
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5 and 6. Suppose i and j could form a strictly Pareto-improving contract in period t. For

brevity, I omit the ijt, (n) subscripts. Then there is a unique y1, y2 ∈ (0, 1) that satisfies

y1 + y2 ≥ 1 and the following property about gains relative to disagreement

V H
(
y2p

H
D + (1− y2)p

M
D

)
− V H(pHD) = cH

(
(pMD − pHD)(y1 + y2 − 1)

)
V M

(
y1p

M
D + (1− y1)p

H
D

)
− V M(pMD ) = cM

(
(pMD − pHD)(y1 + y2 − 1)

)
,

then the pair (y1, y2) is unique.

Intuitively, y1 and y2 both decrease the left-hand sides to zero but increase the right-hand

sides, so there should be a fixed point. In addition, only one of y1 and y2 appear on the left-

hand side of any given equation. Consider the function ŷ1(y2) that chooses a ŷ1 to hold the

first equation with equality at any given y2. As y2 increases, the left-hand side of the first

equation decreases so ŷ1 + y2 must decrease. Therefore ŷ1(y2) must decrease faster than y2.

Applying a similar argument to the other equation ensures any fixed point is unique. The

next proposition shows the fixed point constrains the equilibrium bargain.

Lemma 8 (Dutta (2012), Proposition 3). Suppose σ̂ is a pure strategy Markov perfect equilib-

rium of the game I have described in Proposition 2 under Assumption 3 but not necessarily

5 and 6. Suppose i and j could form a Pareto-improving contract in period t. Then their

equilibrium demands are equal and are bounded above and below by y1p
M
D + (1 − y1)p

H
D and

y2p
H
D + (1− y2)p

M
D , respectively, where y1 and y2 come from Lemma 7.

Lemma 9. For a given ij pair, let y1,(n), y2,(n) be the y1, y2 corresponding to Lemma 7 in

game n for a given ij pair. (If ij does not have a strictly Pareto-improving pair, choose some

y1, y2 ∈ (0, 1) satisfying y1+y2 = 1.) Under the conditions of Proposition 2, y1,(n)+y2,(n) → 1

with a convergence rate that is uniform in (i, j).

D.6 Proofs

Proof of Proposition 1. There are really three cases: Kalai proportional bargaining with two

periods of exclusion, Kalai proportional bargaining with one period of exclusion, and Nash

bargaining with one period of exclusion. Nash and Kalai proportional bargaining produce

the same predictions with two periods of exclusion.

I begin with Kalai (or Nash) bargaining with two periods of exclusion. Two-period bar-

gaining with two periods of exclusion is equivalent to static bargaining but prices are scaled

by 1 + β(1 + π) and insurer gains are scaled by 1 + π. The proposed bargaining solution is

a Kalai proportional solution when p ≥ 0 so that both sides get weakly positive gains from
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trade. Any higher (lower) price would produce lower (higher) gains for the insurer and higher

(lower) gains for the hospital and not be a Kalai proportional bargaining solution. Therefore

this is the unique bargaining solution.

Kalai proportional bargaining solution with one period of exclusion has the same so-

lution by the Kalai proportional path-invariance property. Suppose the insurer bargains

with hospital h in period t0 relative to negotiating in period t0 + 1. Write V (d),H(p0, p1, p2)

and V (d),M(p0, p1, p2) as the value of disagreeing d times with anticipated hospital h prices

p0, p1, p2. Let p̂0 be the proposed price and p̂
(1)
1 be the Kalai proportional response after one

disagreement. By construction, the proposed price satisfies

(1− τ)
(
V (0),M(p̂0, p̂

(1)
1 , p∗Simult)− V (2),M(p̂0, p̂

(1)
1 , p∗Simult)

)
= (τ)

(
V (0),H(p̂0, p̂

(1)
1 , p∗Simult)− V (2),H(p̂0, p̂

(1)
1 , p∗Simult)

)
.

By definition, the Kalai proportional bargaining price after 1 disagreement satisfies:

(1− τ)
(
V (1),M(p̂0, p̂

(1)
1 , p∗Simult)− V (2),M(p̂0, p̂

(1)
1 , p∗Simult)

)
= (τ)

(
V (1),H(p̂0, p̂

(1)
1 , p∗Simult)− V (2),H(p̂0, p̂

(1)
1 , p∗Simult)

)
.

By subtraction:

(1− τ)
(
V (0),M(p̂0, p̂

(1)
1 , p∗Simult)− V (1),M(p̂0, p̂

(1)
1 , p∗Simult)

)
= (τ)

(
V (0),H(p̂0, p̂

(1)
1 , p∗Simult)− V (1),H(p̂0, p̂

(1)
1 , p∗Simult)

)
,

so that p∗Simult = p̂0 is a Kalai proportional bargaining solution. It is the unique simultaneous

bargaining solution by the same arguments as the two-period exclusion case.

I finally show show that the Nash bargaining solution with one period of disagreement has

a different equilibrium by contradiction in the π = 0 case. Suppose not, and the simultaneous

bargaining price was the same. Write p∗Prop as the price from the Kalai proportional solution

from the proposition. I wish to show that p∗Simult ̸= p∗Prop. When bargaining in alternating

periods, by assumption the firms have an internalized externality on hospital −h bargaining

with a response to starting h price of the linear form p−h(ph) = p∗Alt+α1(ph−p∗Alt). In the alter-

nating period bargaining process, a marginal increase to ph increases hospital h’s net present

value profits proportionally to 3, 000
∑∞

u=0(βα1)
2u/(1−β) = 3, 000/ ((1− β)(1− β2α2

1)) and

decreases the insurer’s profits by 3, 000(1 + βα1)/ ((1− β)(1− β2α2
1)). Therefore gains from

trade are split at a ratio of τ(1+βα1)
1−τ

. Notice also that the marginal p−h increase the insurer’s

gains from trade by 3, 000 conditional on the new negotiated ph.
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The alternating period bargaining solution converges to equilibrium. The gains from trade

must satisfy:

(1− τ)

(
(p−h − p∗Alt)−

1 + βα1

(1− β)(1− β2α2
1)

(ph(p−h)− p∗Alt)

)
= (τ) (1 + βα1)

1

(1− β)(1− β2α2
1)

(ph(p−h)− p∗Alt) .

Write p̂−h = p−h − p∗Alt and p̂h = ph(p−h) − p∗Alt for the previous hospital −h and current

hospital h price differences from equilibrium. By combining terms, I obtain:

(1− τ)p̂−h =
1

(1− β)(1− βα1)
p̂h,

so that α1 = (1 − τ)(1 − β)(1 − βα1). It is clear that the assumptions imply α1 > 0. As

a result, they also imply α1 < 1. Notice as a result that p∗Alt ̸= p∗Simult; if p
∗
Alt = p∗Simult,

then alternating period bargaining would split gains from trade proportionally to bargaining

weights rather than the adjusted shares.

Therefore the good-faith Nash disagreement point will involve permanent prices strictly

between p∗Simult and p∗Alt. At least one of the two is not equal to p∗Prop: if both were equal to

p∗Prop, then p∗Alt would split alternating period equilibrium gains proportionally to bargaining

weights (Lemma 1) rather than the Nash solution split. If p∗Simult = p∗Prop but p∗Alt ̸= p∗Prop,

then simultaneous bargaining disagreement will lead to permanent prices that are not equal

to p∗Prop. If p∗Alt < p∗Prop, then Lemma 1 implies that p∗Simult gives the insurer too much

gains; if the opposite holds, it is the reverse. Regardless, p∗Simult ̸= p∗Prop if the bargainers

simultaneously Nash bargain with good-faith disagreement.

Proof of Lemma 1. Suppose hospital 1 bargains with the insurer after hospital 2 reached the

price p∗Alt last period. In the current period, hospital 2’s price is (1 + π)p∗Alt.

With an agreement, the insurer will gain $20m + 1,000 p∗Alt this period and pay 3, 000p∗Alt(2+

π) in every period. With a disagreement, the insurer will pay 4, 000(1+π)p∗Alt this period and

6, 000p∗Simult in all future periods, where 3, 000p∗Simult =
1−τ

1+β(1+π)
($20m(1 + β)) + 1, 000(1−

τ)p∗Simult by Proposition 1.

With an agreement, the hospital will receive a net present value payment of 3, 000p∗Alt/(1−
β). With disagreement, the hospital will receive a net present value payment of 3, 000p∗Simultβ/(1−
β).

The remainder of the proof is algebra to verify the proposed form of p∗Alt splits gains from

trade proportionally. I omit the details for brevity.

Proof of Lemma 2. Intermediate value theorem applied to the continuous GFT functions.
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Proof of Lemma 3. First, I show there is no concession in equilibrium. Suppose ij concede

in equilibrium. If both sides concede, then by Assumption 3, one delegate could do better

by improving their demand and this is not an equilibrium. Suppose only one side concedes.

Consider that side instead deviating at the demands stage to demand the contract reached.

This does not change the demands by any other delegate. This deviation also does not

change the expected profit for any other concession decision. Therefore since the strategies

are Markov, all other concession decisions are unaffected. Therefore resulting firm profits are

unaffected, but the delegate avoids the concession cost and the demand is strictly dominated.

Therefore there is no concession in equilibrium.

Now I show by contradiction that there is never a subgame agreement reached by a hospi-

tal delegate demanding a strictly lower price than the insurer delegate and then negotiating.

By the argument so far, there is no concession in equilibrium. By Assumption 4, both parties

could strictly improve their profits by demanding the contract the other side demands. Con-

tradiction. Therefore demands are equal in equilibrium of any pair that successfully reaches

a contract.

Proof of Lemma 4. I proceed with the two cases for sign(log(s2)).

sb > sa > 1. I first show that for any s2 ≥ sa, there is a s1 > 1 such that the desired gains

from trade apply with G(2),M,Sup

G(2),H,Sup = s2. Choose some s1 ∈ (1, 1+3sa
4

) and let s2 ∈ (4s1−1
3

,∞).

Note that 4s1−1
3

< sa, so that sa and sb could both be values of s2.

Consider the following original subgame. It is the first of two periods that constitute the

second half of the single-market game’s single year. Market 1 is normalized to be of size one.

Insurer 1 is a monopolist, and may contract with hospital 1 and hospital 2. Insurer 1 has

already set premiums of ϕ = 1, insurer 1 has a one-period contract remaining with hospital

2 paying a price of zero, neither hospital has any marginal costs, all negotiation costs are

equal to zero, and benchmark prices are constant. In period 1, insurer 1 has the opportunity

to negotiate a two-period contract with hospital 1. In period 2, insurer 1 has the opportunity

to negotiate a one-period contract with hospital 2 under Kalai proportional bargaining with

τ = 1/2 and, if period-one negotiations failed, can form a one-period contract with hospital

1 if needed.

Demand functions are as follows. For i = 1, 2, there is a fraction ρi of consumers purchase

the insurer’s insurance if hospital i is in the network, get sick, and receive care at hospital i

if they have insurance. Another fraction ρ0 of consumers purchase insurer 1’s insurance if the

network contains any hospital, get sick, and then choose hospital i with probability ρi∑
h∈G1

ρh
.
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The remaining mass of consumers, of size ρ−1, does not purchase insurance.

Parameters are as follows. Let β be chosen to solve:

β1/2 + β + β3/2 =
s1 − 1

s2 − s1
.

This is well-defined: s1 ∈
(
1, 3sa−1

4

)
and s2 ∈ (4s1−1

3
,∞), so that the right-hand side is strictly

between 0 and s1−1
s1−1

3

= 3, so that there is some β ∈ (0, 1) that satisfies these conditions by

intermediate value theorem. Choose some ρ0, ρ1, ρ2 > 0 such that ρ0 + ρ1 + ρ2 < 1 and:

ρ0ρ2
2ρ1(ρ0 + ρ1 + ρ2)

= (s1 − 1)
1 + β

β
.

This has many feasible solutions: for example, start with ρ0 = ρ1 = ρ2 = 1/4, and then scale

either ρ1 or ρ2 downward to achieve the desired ratio.

I conjecture (and verify) that networks are complete in both period subgames, for now

ignoring the discounting rate. Consider the negotiation between insurer 1 and hospital 2

in period 2 at an anticipated hospital 1 price of p11. By reaching an agreement, insurer 1

gains an additional ρ2 of premium revenue, reduces its payment to hospital 1 by p11
ρ0ρ2
ρ1+ρ2

,

incurs a negotiation cost of 0, and pays its negotiated payment p∗12(p11)ρ2
(1−ρ−0)
ρ1+ρ2

to hospital

2, while the hospital receives the negotiated payment and pays its negotiation cost of 0.

The equilibrium payment is p∗12(p11)(1 − ρ−1)
ρ2

ρ1+ρ2
= 1

2

(
ρ2 + p11ρ0

ρ2
ρ1+ρ2

)
, which generates

positive surplus so long as p11 ≥ 0, as it is in equilibrium under any agreement reached in

any sub-subgame considered here. Symmetrically, the equilibrium payment when negotiating

with hospital 1 in period 2 is p∗,D11 (p12)(1−ρ−1)
ρ1

ρ1+ρ2
= 1

2

(
ρ1 + p12ρ0

ρ1
ρ1+ρ2

)
. Write the solution

to the disagreement point bargain as p∗12(p
∗,D
11 (p12)) as p

∗,D
12 and write p∗,D11 = p∗,D11 (p∗,D12 ).

Now consider the shape of gains from trade available in period 1. Let p
(1),M
11 be the price

that makes hospital 1 indifferent from disagreeing. Every marginal increase in p11 above

p
(1),M
11 increase hospital 1’s net present value profit by ρ1(ρ0+ρ1+ρ2)

ρ1+ρ2
(1 + β). The price p

(1),H
11

that makes insurer 1 indifferent from disagreeing for the original first period is slightly

more subtle: by agreeing, the insurer gains an additional ρ2 of premium revenue, pays an

additional ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

p
(1),H
11 (1+β)−β ρ1(ρ0+ρ1+ρ2)

ρ1+ρ2
p∗,D11 to hospital 1, and changes the hospital

2 net present value payments by β ρ2(ρ0+ρ1+ρ2)
2(ρ1+ρ2)(ρ0+ρ1+ρ2)

(p
(1),H
11 − p∗,D11 ) = β ρ2

2(ρ1+ρ2)
(p

(1),H
11 − p∗,D11 ).

Let p
(1),H
11 be the price that maximizes hospital 1’s profit, subject to making insurer 1 weakly

prefer agreement. Every marginal decrease in p11 below p
(1),H
11 increases insurer 1’s net present

value profit by (1 + β)ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

+ β ρ0ρ2
2(ρ1+ρ2)

. By linearity,

G(1),H,Sup =
(
p
(1),H
11 − p

(1),M
11

) ρ1(ρ0 + ρ1 + ρ2)

ρ1 + ρ2
(1 + β)
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G(1),M,Sup =
(
p
(1),H
11 − p

(1),M
11

)(
(1 + β)

ρ1(ρ0 + ρ1 + ρ2)

ρ1 + ρ2
+ β

ρ0ρ2
2(ρ1 + ρ2)

)
,

so that:

G(1),M,Sup

G(1),H,Sup
=

(1 + β)2ρ1(ρ0 + ρ1 + ρ2) + βρ0ρ2
(1 + β)2ρ1(ρ0 + ρ1 + ρ2)

= 1 +
β

1 + β

ρ0ρ2
2ρ1(ρ0 + ρ1 + ρ2)

= s1.

Now consider the bargaining problem between hospital 1 and insurer 1 in period 2 of the

split-in-half game. If they disagree, they go to period 3, which is the same as the original

period 2 except now there is a remaining half-period. The non-11 bargains follow fixed Kalai

proportional bargaining, so the new period 4 does not change their bargaining outcome.

The 11 bargain is transferable utility in both period 3 and period 4 of impasse, so that by

homogeneity of f the 11 bargaining solution is unaffected by treating period 4 as having no

agreement.

Now consider the marginal value of prices in period 2 of the split-in-half game, wherein

time is now discounted by β̃ =
√
β and per-period demand is scaled downward by 1 +

√
β = 1 + β̃. For every marginal increase in p11, hospital 1 gains net present value profit

of 1+β̃+β̃2

1+β̃

ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

. For every marginal decrease in p11, insurer 1 gains net present value

profit of 1+β̃+β̃2

1+β̃

ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

+ β̃ ρ0ρ2
2(ρ1+ρ2)

. Therefore the ratio of maximal gains is:

G(2),M,Sup

G(2),H,Sup
= 1 +

β̃ + β̃2

1 + β̃ + β̃2

ρ0ρ2
2ρ1(ρ0 + ρ1 + ρ2)

.

Notice also that:

G(1),M,Sup

G(1),H,Sup − 1
G(2),M,Sup

G(2),H,Sup − G(1),M,Sup

G(1),H,Sup

=
β/(1 + β)

β̃+β̃2

1+β̃+β̃2 − β/(1 + β)

=
β̃2(1 + β̃ + β̃2)

(1 + β̃2)(β̃ + β̃2)− β̃2(1 + β̃ + β̃2)

=
β̃2(1 + β̃ + β̃2)

β̃

= β1/2 + β + β3/2 =
s1 − 1

s2 − s1
.

Therefore G(2),M,Sup

G(2),H,Sup = s2, as desired.

sb < sa < 1. Consider similar games, but now there are two insurers instead of two

hospitals, and hospital 1 negotiates with insurer 2 in the original period two.

Choose some s1 ∈
(

4
3s−1

a +1
, 1
)
, which is non-empty because sa < 1. Consider an arbitrarily
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s2 ∈
(
0, 3

4s−1
1 −1

)
. Note that both sa and sb are feasible values of s2. Choose β to solve:

β1/2 + β + β3/2 =
s−1
1 − 1

s−1
2 − s−1

1

,

which is feasible because I have essentially exchanged the roles of s and s−1 in the construction

so far. Also choose ρ0, ρ1, ρ2 > 0 such that ρ0 + ρ1 + ρ2 < 1 and:

ρ0ρ2
2ρ1(ρ0 + ρ1 + ρ2)

= (s−1
1 − 1)

1 + β

β
,

which is feasible by the same argument as in the other case.

Each insurer requires an agreement with the hospital to sell any insurance. As the only

insurer with a contract, the insurer would sell ρ0+ρj units of insurance at the fixed premium

of 1. If both insurers have a contract with hospital 1, then each insurer sells ρj(1 +
ρ0

ρ1+ρ2
) =

ρj(ρ0+ρ1+ρ2)

ρ1+ρ2
.

Consider the negotiation between hospital 1 and insurer 2 in period 2, under the ex-

pected 11 price of p11. By agreeing, hospital 1 gains a payment p12
ρ2(ρ0+ρ1+ρ2)

ρ1+ρ2
from insurer 2

and loses a payment p11
ρ0ρ2
ρ1+ρ2

from insurer 1. By agreeing, insurer 2 gains premium revenue

of ρ2(ρ0+ρ1+ρ2)
ρ1+ρ2

and pays the negotiated payment. Under Kalai proportional bargaining with

equal bargaining weights, the negotiated payment is p∗12
ρ2(ρ0+ρ1+ρ2)

ρ1+ρ2
= 1

2

(
ρ2(ρ0+ρ1+ρ2)

ρ1+ρ2
+ p11

ρ0ρ2
ρ1+ρ2

)
.

Next, consider the 11 bargain in the original period 1. For every marginal increase in p11,

hospital 1 gains (1 + β)ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

+ β ρ0ρ2
2(ρ1+ρ2)

and insurer 1 loses (1 + β)ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

. As a

result:

G(1),H,Sup

G(1),M,Sup
= 1 +

β

1 + β

ρ0ρ2
2ρ1(ρ0 + ρ1 + ρ2)

= 1 + (s−1
1 − 1) = s−1

1

G(1),M,Sup

G(1),H,Sup
= s1.

Next, consider the split-in-half bargain in the new period 2. For every marginal increase

in p11, hospital 1 gains 1+β̃+β̃2

1+β̃

ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

+ β̃ ρ0ρ2
2(ρ1+ρ2)

and insurer 1 loses 1+β̃+β̃2

1+β̃

ρ1(ρ0+ρ1+ρ2)
ρ1+ρ2

.

As a result, the Pareto frontier is linear (within Pareto-improving 11 contracts) and:

G(2),H,Sup

G(2),M,Sup
= 1 +

β̃ + β̃2

1 + β̃ + β̃2

ρ0ρ2
2ρ1(ρ0 + ρ1 + ρ2)

.
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Note that:

G(1),H,Sup

G(1),M,Sup − 1
G(2),H,Sup

G(2),M,Sup − G(1),H,Sup

G(1),M,Sup

=

β̃2

1+β̃2

β̃+β̃2

1+β̃+β̃2 − β̃2

1+β̃2

=
β̃2 + β̃3 + β̃4

β̃ + β̃2 + β̃3 + β̃4 − (β̃2 + β̃3 + β̃4)

= β̃ + β̃2 + β̃3

=
s−1
1 − 1

s−1
2 − s−1

1

.

Therefore G(2),M,Sup

G(2),H,Sup = s2, completing the proof.

Proof of Lemma 5. Because f is Pareto-optimal and I am only interested in the output of f ,

I without loss of generality assume that S1 and S2 include the convex combination of their

Pareto frontiers and (0, 0).

Note that the S2 Pareto frontier runs from (0, G1,M G2,M

G1,M ) to (G1,H G2,M

G1,M , 0). Therefore

S2 =
G2,M

G1,M S1.

By homogeneity, f((0, 0), S2) = f(G
2,M

G1,M (0, 0), G
2,M

G1,M S1) =
G2,M

G1,M f((0, 0), S1). Therefore the

ratio of gains from trade are equal.

Proof of Lemma 6. The claim holds because the slope is unchanged, which I verify via al-

gebra. The Pareto frontier is GM(GH) = G1,M G1,H−GH

G1,H , or written in the opposite direction,

GH(GM) = G1,H G1,M−GM

G1,M .

The values are:

G2,M = GM(dH)− dM =
G1,MG1,H −G1,MdH −G1,HdM

G1,H

G2,H = GH(dM)− dH =
G1,HG1,M −G1,HdM −G1,MdH

G1,M

G2,M

G2,H
=

G1,M

G1,H
,

completing the proof.

Proof of Corollary 1. Kalai implies simplification. I proceed with a formal argument,

but this property is essentially immediate by Kalai (1977)’s step-by-step property. To show

that the new negotiated contract is as described, I show (i) the expected net present value

profits of a particular contract with positive length ct0 (benchmark B, length ℓ, and starting

price p) are unchanged in the new game’s associated contract c̃t0 (with benchmark B̃ = B,

length ℓ̃ = 2ℓ, and starting price p̃ = p); (ii) the value of disagreeing twice in the new game
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is the same as the value of disagreeing once in the old game; and (iii) the added chance to

disagree once does not affect the negotiated contract.

For the value of agreement (i), let Ct and ϕt be the original (potentially random) agree-

ments and premiums that emerge in the original game in response to ct0 . I abuse notation

and let C̃t̃ and ϕ̃t̃ be the associated responses in the new game in response to c̃t0 , and Ct and

ϕt be the responses in the original game. By Assumption 7, for every v ≥ 0, C̃t0+2v is the

same as Ct0+v contract lengths are doubled; C̃t0+2v+1 is the same as C̃t0+2v except lengths

are reduced by one; and ϕ̃t̃0+2v and ϕ̃t̃0+2v+1 are equal to ϕt0+v. The associated realized profit

for the hospital is:

∞∑
t̃=t̃0

β̃ t̃−t̃0
∑
n∈G̃H

it̃

D̃H
int̃(G̃t̃, ϕ̃t̃)− r̃Hi R̃int̃

=
∞∑

t=t0

(β̃2(t−t0)

(1 + β̃)

∑
n∈GH

it

DH
int(Gt, ϕt)/(1 + β̃)

− rHi Rint

 ,

which is the original realized profit in the original game. By Assumption 7, expectations are

unchanged so that expected profits are unchanged. Insurer expected profits at the equilibrium

agreement are similarly unchanged. Therefore, the Pareto frontier of agreements that split

gains from trade proportionally to bargaining weights is unchanged.

Next we consider the value of disagreeing two times (ii). Let the (potentially random)

expected value d periods in the future of disagreeing d times be V
H,(d)
ijt0

and V
M,(d)
ijt0

to hospital

i and insurer j, respectively, in the old game, and Ṽ
H,(d)

ijt̃0
and Ṽ

M,(d)

ijt̃0
, respectively, in the

new game. Consider the distribution of negotiation subgames of the new game after two

disagreements and the subgames of the old game after one disagreement. By Assumption 7,

there is a mapping such that the distribution of information, benchmark prices, and equi-

librium agreements is the same in the two games, except that contract lengths are doubled.

As a result, there is a mapping over random variables such that t̃0, V
H,(1)
ijt0

= Ṽ
H,(2)

ijt̃0
and

V
M,(1)
ijt0

= Ṽ
M,(2)

ijt̃0
.

Now I show that the chosen contract is unchanged (iii). By assumption, the chosen

contracts are unique. The chosen contracts c∗ = (B∗, ℓ∗, p∗) and c̃∗(B̃∗, ℓ̃∗, p̃∗) satisfy:

c∗ = argmax
c

V H
ijt0

(c) + V M
ijt0

(c) s.t. τij(V
H
ijt0

(c)− Et0 [V
H,(1)
ijt0

]) = (1− τij)(V
M
ijt0

(c)− Et0 [V
M,(1)
ijt0

])

c̃∗ = argmax
c̃

V H
ijt0

(c̃) + V M
ijt0

(c̃) s.t. τij(Ṽ
H
ijt̃0

(c̃)− Et̃0 [Ṽ
H,(1)

ijt̃0
]) = (1− τij)(Ṽ

M
ijt̃0

(c̃)− Et̃0 [Ṽ
M,(1)

ijt̃0
]).
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By construction of the bargaining solution after one disagreement,

τij

(
Ṽ

H,(1)

ijt̃0
− Et̃0+1[Ṽ

H,(2)

ijt̃0
]
)
= (1− τij)

(
Ṽ

M,(1)

ijt̃0
− Et̃0+1[Ṽ

M,(2)

ijt̃0
]
)
.

By rational expectations, I obtain:

c̃∗ = argmax
c̃

V H
ijt0

(c̃) + V M
ijt0

(c̃) s.t. τij(Ṽ
H
ijt̃0

(c̃)− Et̃0 [Ṽ
H,(2)

ijt̃0
]) = (1− τij)(Ṽ

M
ijt̃0

(c̃)− Et̃0 [Ṽ
M,(2)

ijt̃0
])

⇔ c̃∗ = argmax
c̃

V H
ijt0

(c̃) + V M
ijt0

(c̃) s.t. τij(Ṽ
H
ijt̃0

(c̃)− Et0 [Ṽ
H,(1)
ijt0

]) = (1− τij)(Ṽ
M
ijt̃0

(c̃)− Et0 [V
M,(1)
ijt0

]).

The space of agreement expected net present value profits is unchanged, so that the expected

net present value of the chosen agreement is unchanged. Because the agreements are unique

and the contract c̃ = (B∗, 2ℓ∗, p∗) achieves the maximal expected net present value profits

within the constraint set, the chosen contract is as described.

Other direction. Choose some sb < sa < 1 and let f be a bargaining solution that

satisfies the conditions of this corollary. Apply the construction of Lemma 4 to obtain a pair

of two-period games with the ratio of G(1),H,Sup

G(1),M,Sup = s1 and G(2),H,Sup

G(2),M,Sup either equal to sa or sb,

where G is a firm’s maximal gains from trade.

I show that the share of gains from trade are equal for both sa and sb. Let τ11 and τ
(2)
11 be

insurer 1’s share of gains from trade in the split-in-half period 1 and period 2, respectively.

Consider the problem of negotiating over period 1, relative to weighting one split-in-half

period and negotiating and achieving some surplus. By Lemma 5 and Lemma 6, τ11 is also

insurer 1’s share of 11 gains from trade relative to waiting until the split-in-half period 2.

By adding gains from trade, τ11 = τ
(2)
11 . Therefore τ11 is the share of insurer 1’s gains from

trade for both sa and sb.

Next, take sa → 1−, so that s1 → 1−. By the argument above, τ11 is unchanged on this

path. By continuity, τ11 is also insurer 1’s share of gains from trade under transferable utility.

By an analogous argument, τ11 is also insurer 1’s share of gains from trade for any sa > 1.

Therefore there is a τij = τ11 ∈ [0, 1] such that f and Kalai proportional with τij bargaining

weight have the same predictions for all linear Pareto frontiers.

Proof of Lemma 7. I am proceeding assuming there is at least one y1 and y2 such that

y1 + y2 > 1 and:

V H
(
y2p

H
D + (1− y2)p

M
D

)
− V H(pHD) = cH

(
(pMD − pHD)(y1 + y2 − 1)

)
V M

(
y1p

M
D + (1− y1)p

H
D

)
− V M(pMD ) = cM

(
(pMD − pHD)(y1 + y2 − 1)

)
.

Since y1+y2 > 1 and c is increasing for values above 0, the right-hand side of both equations
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is positive. Therefore the left-hand side is positive, i.e. y1, y2 < 1.

Now consider more generally the function ŷ1(y2) : [0, 1] → [0, 1] to solve V H
(
y2p

H
D + (1− y2)p

M
D

)
−

V H(pHD) = cH
(
(pMD − pHD)(ŷ1(y2) + y2 − 1)

)
, i.e:

ŷ1(y2) =
(cH)−1

(
V H

(
y2p

H
D + (1− y2)p

M
D

)
− V H(pHD)

)
pMD − pHD

+ 1− y2

As pointed out by Dutta in the differentiable case, ŷ1 is a continuous function, ŷ1(1) = 0,

ŷ1(0) > 1, and ŷ1(y2) decreases strictly faster than y2 since an increase in y2 by a unit

and a decrease in y1 by one unit leaves cH((pMD − pHD)(y1 + y2 − 1)) unchanged but reduces

V H(y2p
H
D + (1− y2)p

M
D ). The function ŷ2(y1) has the same properties.

By the intermediate value theorem, there there is a fixed point to the function ŷ1(ŷ2(y1)).

Since increasing y1 by ε increases ŷ1(ŷ2(y1)) by strictly more than ε, that fixed point is

unique. Since the fixed point (y∗1, y
∗
2) is in (0, 1), it must generate positive left-hand sides so

that y∗1 + y∗2 > 1.

Proof of Lemma 8. This claim is almost exactly Dutta (2012)’s Proposition 3. Suppose the

hospital delegate demands price at least z1p
M
D +(1−z1)p

H
D and the insurer delegate demands

price at most z2p
H
D + (1− z2)p

M
D . Since there is no concession in equilibrium (Lemma 3), it

must be z1 = (1 − z2), so that z1 + z2 = 1. z1 = 1 and z2 = 0 corresponds to the hospital

getting all of the surplus, whereas z2 = 1 and z1 = 0 corresponds to the insurer getting all

of the surplus.

After appropriate notation changes, the claim is almost in the setup of Dutta (2012).

There is a change to concession costs if both concede, but since that requires bilateral

deviation it is irrelevant to the equilibrium and the same result holds.

Proof of Lemma 9. I proceed for some ij and a sequence of games n satisfying pMD > pHD and

y1 + y2 > 1; the claim is immediate for the other n.

Recall that V H(pMD ) − V H(pHD), V
M(pHD) − V M(pMD ) →n 0 by Assumption 5 and V ′ ≥

εB > 0 by Assumption 3, so that pMD − pHD →n 0.

Recall that y1,(n), y2,(n) are defined as the solution to:

V H
(
y2,(n)p

H
D + (1− y2,(n))p

M
D

)
− V H(pHD) = cH

(
(pMD − pHD)(y1,(n) + y2,(n) − 1)

)
V M

(
y1,(n)p

M
D + (1− y1,(n))p

H
D

)
− V M(pMD ) = cM

(
(pMD − pHD)(y1,(n) + y2,(n) − 1)

)
.

Costs go to zero quickly enough that the infinite right-derivative at zero dominates. The

cost functions must tend to zero because pMD −pHD →n 0 and y1,(n)+y2,(n)−1 is bounded. The

cost functions are also lower-bounded by a function with an infinite right-derivative (Assump-
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tion 5). As a result, there is a sequence of ϵn →n 0 such that c
(
(pMD − pHD)(y1,(n) + y2,(n) − 1)

)
>

B(pMD − pHD)(y1,(n)+ y2,(n)− 1)/(2ϵn) for all n large enough and all i, j with y1,(n)+ y2,(n) > 1.

Note that by construction, V H
(
y2,(n)p

H
D + (1− y2,(n))p

M
D

)
−V H(pHD) ≤ B(1−y2,(n))(p

M
D −

pHD) and V M
(
y2,(n)p

H
D + (1− y2,(n))p

M
D

)
− V H(pHD) ≤ B(1− y1,(n))(p

M
D − pHD). As a result:

B(pMD − pHD)(y1,(n) + y2,(n) − 1)/ϵn < B(2− y1,(n) − y2,(n))(p
M
D − pHD)

y1,(n) + y2,(n) − 1 < 2ϵn →n 0.

Since 1 ≤ y1,(n) + y2,(n) ≤ 1 + on(ϵn) for ϵn independent of i, j, this completes the proof.

Proof of Proposition 2. I focus on an ijt, (n),Ct−1 potential bargain (so pHD ≤ pMD ) and omit

the subscripts and previous contract for clarity. If pHD = pMD , then every Pareto improving

bargain under Assumption 3 splits the zero gain from trade of zero according to any weight.

I therefore proceed assuming pHD < pMD .

If y1,(n)+y2,(n) = 1, the proof holds immediately, so I proceed for n such that y1,(n)+y2,(n) >

1.

By Assumption 3, for any a ∈ [0, 1]:

V H(apHD + (1− a)pMD )− V H(pHD) ∈
[
(1− a)Bε(pMD − pHD), (1− a)B(pMD − pHD)

]
V M(apMD + (1− a)pHD)− V M(pMD ) ∈

[
(1− a)Bε(pMD − pHD), (1− a)B(pMD − pHD)

]
.

The y1,(n) and y2,(n) from Lemma 7 must satisfy:

CH((pMD − pHD)(y1,(n) + y2,(n) − 1)) ∈
[
(1− y2,(n))Bε(pMD − pHD), (1− y2,(n))B(pMD − pHD)

]
CM((pMD − pHD)(y1,(n) + y2,(n) − 1)) ∈

[
(1− y1,(n))Bε(pMD − pHD), (1− y1,(n))B(pMD − pHD)

]
.

Because of the strict derivatives of Assumption 3 and the gains from trade going to zero under

Assumption 5 and y1,(n), y2,(n) are bounded above by one, it must be (pMD −pHD)(y1,(n)+y2,(n)−
1) →n 0.

Now define the ratio of gains from trade corresponding to an arbitrary y1, y2 ∈ (0, 1) as:

R(n)(y1, y2) =
V M(y1p

M
D + (1− y1)p

H
D)− V M(pMD )

V H(y2pHD + (1− y2)pMD )− V H(pHD)
.

I show that the ratio of gains at the demand bounding y1,(n), y2,(n) tend to the Kalai

proportional limit. Note that (pMD − pHD)(y1,(n) + y2,(n) − 1) ∈ (0, pMD − pHD ]. Recall that

by Assumption 6, x ∈ (0, pMD − pHD ] implies cM (x)
cH(x)

− wM

wH = on(n). Recall by Lemma 7,
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R(n)(y1,(n), y2,(n)) =
cM ((pMD −pHD)(y1,(n)+y2,(n)−1))

cH((pMD −pHD)(y1,(n)+y2,(n)−1))
. As a result:

R(n)(y1,(n), y2,(n))−
wM

j

wH
j

=
cM((pMD − pHD)(y1,(n) + y2,(n) − 1))

cH((pMD − pHD)(y1,(n) + y2,(n) − 1))
−

wM
j

wH
j

= on(1).

As a corollary, y2,(n) cannot tend to one. The sum y1,(n) + y2,(n) → 1 (Lemma 9) so that

for n large enough that y1,(n) + y2,(n) ∈ [1, 1 + ϵ] for some ϵ > 0:

R(n)(y1,(n), y2,(n)) ≥ R(n)(1− y2,(n) + ϵ, y2,(n)) ≥
Bε(y2,(n) − ϵ)(pMD − pHD)

B(1− y2,(n))(pMD − pHD)
.

As a result, R(n)(y1,(n), y2,(n)) can only tend to the finite
wM

j

wH
i

if y2,(n) does not tend to one.

Let the equilibrium contract be z∗1p
M
D + z∗2p

H
D , where z∗2 = 1 − z∗1 . The relative split of

the jointly reached contract at price z∗1p
M
D + z∗2p

H
D is R(n) (z

∗
1 , z

∗
2). Notice that R(n)(y1, y2) is

strictly increasing in y2 and strictly decreasing in y1. Recall by Lemma 8 that

z∗1p
M
D + z∗2p

H
D ∈

[
y2,(n)p

H
D + (1− y2,(n))p

M
D , y1,(n)p

M
D + (1− y1,(n))p

H
D

]
. As a result, z∗1 ∈

[
1− y2,(n), y1,(n)

]
and z∗2 ∈

[
1− y1,(n), y2,(n)

]
. Combining these inequalities:

R(n) (z
∗
1 , z

∗
2) ∈

[
R(n)

(
y1,(n), 1− y1,(n)

)
, R(n)

(
1− y2,(n), y2,(n)

)]
.

Consider the upper bound and normalize by the (y1,(n), y2,(n)) split:

R(n) (z
∗
1 , z

∗
2)−R(n)(y1,(n), y2,(n)) ≤ R(n)

(
1− y2,(n), y2,(n)

)
−R(n)(y1,(n), y2,(n))

=
vM((1− y2,(n))p

M
D + y2,(n)p

H
D)− vM(y1,(n)p

M
D + (1− y1,(n))p

H
D)

vH(y2,(n)pHD + (1− y2,(n))pMD )− vH(pHD)

≤
B(y1,(n) + y2,(n) − 1)

Bε(1− y2,(n))
→n 0.

Therefore:

R(n)(z
∗
1 , z

∗
2) ≤ R(n)(y1,(n), y2,(n)) + on(1) =

wM
j

wH
i

+ on(1).

By a symmetric argument:

R(n)(z
∗
1 , z

∗
2)

−1 ≥ R(n)(y1,(n), y2,(n))
−1 − on(1).
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Since R(n)(y1,(n), y2,(n)) tends to a nonzero constant, the combination implies:

V M(p∗)

vH(p∗)
= R(n)(z

∗
1 , z

∗
2) =

wM
j

wH
i

+ on(1).

Since the on(1) bound is independent of (i, j, t,Ct−1), this completes the proof.

Proof of Proposition 3. Begin with some ijt0 where i and j form a contract. If the next

contract is formed in period t0+1, the claim is immediate. Otherwise, say the next contract

is formed in a period t∗+1. The period t∗ is the last period in which the Ṽ functions enforce

disagreement.

For the sake of conciseness, I say that σ̂(Ct−1) = 0 if ij do not form a contract in period

t ∈ [t0, t
∗] on this disagreement path. Then by Proposition 2, it is generally the case for

ijt, (n) (with separate arguments depending on whether or not a contract emerges):

wM
j

(
V H
ijt,(n)(σ̂(Ct−1))− V H

ijt,(n)(0 | Ct−1)
)
= wH

i

(
V M
ijt,(n)(σ̂(Ct−1))− V M

ijt,(n)(0 | Ct−1)
)

+ o
(
V M
ijt,(n)(σ̂(Ct−1))− V M

ijt,(n)(0 | Ct−1)
)
.

Let Ṽ H(t − t0) be the value to hospital i of disagreeing t − t0 times and then behaving

on the equilibrium path starting in period t, and let Ṽ M(t − t0) be defined similarly. By

construction:

wM
j

(
V H
ijt,(n)(σ̂(Ct−1))− Ṽ H

ijt,(n)(0 | Ct−1)
)
+ wH

i

(
V M
ijt,(n)(σ̂(Ct−1))− Ṽ M

ijt,(n)(0 | Ct−1)
)

=wM
j

(
Ṽ H(0)− Ṽ H(t∗ + 1− t0)

)
+ wH

i

(
Ṽ M(0)− Ṽ M(t∗ + 1− t0)

)
=wM

j

(
t∗∑

t=t0

Ṽ H (t− t0)− Ṽ H (t+ 1− t0)

)
+ wH

i

(
t∗∑

t=t0

Ṽ M (t− t0)− Ṽ M (t+ 1− t0)

)

=
t∗∑

t=t0

(
wM

j

(
Ṽ H (t− t0)− Ṽ H (t+ 1− t0)

)
+ wH

i

(
Ṽ M (t− t0)− Ṽ M (t+ 1− t0)

))
.

Recall that Ṽ M reflects a bargain after t− t0 disagreements, so that there is a bound on the

instantaneous disagreement split. Let the contract that is put in place with an agreement

after t − t0 disagreements be written as C̃t. Let the contract state if they disagree again

be C̃t/ij. Then since the wH
i and wM

j are fixed and finite, the value difference from t∗ − t0

disagreements can be bounded as:

wM
j

(
V H
ijt,(n)(σ̂(Ct−1))− Ṽ H

ijt,(n)(0 | Ct−1)
)
+ wH

i

(
V M
ijt,(n)(σ̂(Ct−1))− Ṽ M

ijt,(n)(0 | Ct−1)
)
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≤
t∗∑

t=t0

o
(
βt−t0

(
V M
ijt,(n)(C̃t)− V M

ijt,(n)(C̃t/ij)
))

=o

(
t∗∑

t=t0

βt−t0
(
V M
ijt,(n)(C̃t)− V M

ijt,(n)(C̃t/ij)
))

.

By construction, the value of disagreeing once more is the value of the impasse point this

period and the value of the optimal contract next period. That is to say:

V M
ijt,(n)(C̃t/ij) = πM

jt,(n)(Ct/ij) + βV M
ijt+1,(n)(C̃t+1).

As a result:

wM
j

(
V H
ijt,(n)(σ̂(Ct−1))− Ṽ H

ijt,(n)(0 | Ct−1)
)
+ wH

i

(
V M
ijt,(n)(σ̂(Ct−1))− Ṽ M

ijt,(n)(0 | Ct−1)
)

=o

(
Vijt0,(n)(C̃t)−

t∗∑
t=t0

βt−t0πM
jt,(n)(Ct/ij)− βVijt∗+1,(n)(C̃t+1)

)
= o

(
V M
ijt,(n)(σ̂(Ct−1))− Ṽ M

ijt,(n)(0 | Ct−1)
)
= on(1).

The final line holds because V M
ijt,(n)(σ̂(Ct−1))−Ṽ M

ijt,(n)(0 | Ct−1) is bounded by assumption.

117



C

M

P

H

W

C

M

P

H

W

C

M

P

H

W

C

M

P

H

W

HPUOV UnitedHealth

Aetna Cigna

−82 −81 −80 −79 −78 −82 −81 −80 −79 −78

38

39

40

38

39

40

0% 25% 50% 75%100%

% Discharges In−Network

Figure 23: Percent of 2016 inpatient discharges by county of residence that are in the 2015
reported network of (clockwise from top-left) Aetna, Cigna, UnitedHealth, and the Health
Plan of the Upper Ohio Valley. Highmark BCBS (omitted) is in-network in all West Virginia
hospital reports. The large cities of Charleston, Huntington, Morgantown, Wheeling, and
Pittsburgh, PA are indicated by letter labels.
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Figure 24: Fraction of modeled bargain net present value payments (and as a result, bar-
gaining optimization importance) accounted for by number of bargains at the hospital. The
largest contributors are WVU Health System (six bargains in red) and CAMC (four bargains
in green), though many other hospitals had two or four bargains.
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Figure 25: Fraction of modeled bargain net present value payments (and as a result, bar-
gaining optimization importance) accounted for by insurer. Highmark BCBS accounted for
roughly one-half of bargains (left) and more than three-quarters of net present value pay-
ments (right).
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Figure 26: Estimated concordance of benchmark classification by insurer and fiscal year
starting with larger contract scale reports in 2011. Blue and red contracts are classified by
my algorithm as prospective and share of charges, respectively. Dark colors correspond to
round-number discounts reaching the opposite conclusion. An estimated 94.2% of inpatient
payments have the same imputation across methods, 1.1% are assigned as share of charges
by only repeating non-round-number discounts, and 4.8% are assigned as prospective by only
reporting varying round-number discounts (driven by Highmark BCBS-Cabell Huntington
in 2011–13).
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Figure 27: Counterfactual charge-to-cost ratios under original charges (red), maximum al-
lowed list prices (“charges”) under cumulative regulation (green), and counterfactual charges
(blue). The regulation is lax and list prices are able to increase more quickly than costs, but
the state-level list price markup only increases by 22% rather than 32%.
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