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Abstract

I study inference on the average causal effect under weak overlap. It is known that when the propensity

score density is large near zero, no regular root-n-consistent estimators exist and standard estimators may

fail to be asymptotically normal. As a result, previous approaches to causal inference under weak overlap

have relied on nonstandard estimators, nonstandard confidence intervals, or have settled for targeting

average effects within a nonstandard population. I show that statistical inference in this setting need not

be so difficult: standard Wald confidence intervals for the standard doubly robust estimator are valid

for the standard average causal effect, provided the estimator uses an appropriate trimming or clipping

strategy to control extreme estimated propensities. The key is to clip at a rate decaying slowly enough

to obtain asymptotic normality, but quickly enough that the bias introduced by clipping is second-order.

I show that Wald confidence interval validity for clipped AIPW under weak overlap requires unusually

stringent nuisance error conditions, but these conditions are achievable under appropriate smoothness

conditions. The procedure also calls for a sequence of trimming or clipping thresholds, so I propose rules

of thumb for the threshold choice. In simulations, clipped AIPW achieves near-nominal inference in large

samples, but with only 1,000 or 10,000 observations, I find that the associated confidence intervals can

slightly overreject the true null hypothesis. In an empirical application, the clipped AIPW estimator that

targets the standard average treatment effect yields similar precision to the heuristic 10% fixed-trimming

approach that changes the target sample.

1 Introduction

I study inference for causal effects in the presence of very weak overlap. By very weak overlap, I mean

that propensity scores can be common enough near zero to introduce an infinite semiparametric efficiency

bound, but not so common that the average effect is rendered unidentified.
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The framework I consider is almost standard, with the exception that I will permit very weak overlap.

The econometrician observes n independent and identically distributed observations of covariates X ∈ Rd,

outcome Y ∈ R, and binary treatment D ∈ {0, 1} from some distribution P . For simplicity, I assume

the econometrician would like to estimate the average potential outcome ψ = E[E[Y | X,D = 1]]; my

results will carry through for average treatment effects and multiple discrete treatments. Two common

strategies for estimating ψ are the Inverse Propensity Weighting (IPW) estimator ψ̂IPW = 1
n

∑ DiYi

ê(Xi)
,

where ê estimates the propensity function e(X) = P (D = 1 | X), and the Augmented IPW (AIPW)

estimator ψ̂AIPW = 1
n

∑
µ̂i +

Di

ê(Xi)
(Yi − µ̂(Xi)), where µ̂ also estimates the outcome regression function

µ(X) = E[Y | X,D = 1].

Traditional analysis of inverse propensity estimators proceeds under a strict overlap assumption that

e(X) is bounded away from zero, or at least that E[1/e(X)] exists. If E[1/e(X)] fails to exist, then IPW

and AIPW estimators frequently divide by small numbers, the semiparametric bound is infinite, and IPW

and AIPW may fail to be asymptotically normal even if the propensity function is known (Khan and Tamer,

2010; Ma and Wang, 2020; Heiler and Kazak, 2021).

Two standard approaches for making progress with IPW under weak overlap are to “clip” (Winsorize) or

“trim” (drop from the dataset) observations with propensity scores below a given threshold. However, this

strategy introduces a bias-variance tradeoff. On the one hand, if the threshold is set at a sufficiently large

value, the IPW estimator will have an approximately normal sampling distribution, but the distribution will

be centered at the wrong estimand (Khan and Tamer, 2010; Ma and Wang, 2020). On the other hand, if the

threshold is set at a sufficiently small value, the IPW will have limited bias, but the large inverse propensity

scores may introduce a nonstandard asymptotic distribution that requires a nonstandard statistical inference

strategy (Ma and Wang, 2020; Heiler and Kazak, 2021). Empirical practice has generally favored the use of

fixed trimming thresholds that introduce bias even asymptotically (Crump et al., 2009).

The main contribution of this paper is to show that replacing the IPW estimator with the AIPW estimator

can solve the bias-variance tradeoff that applies to clipping or trimming for IPW. In particular, I show that

Wald confidence intervals constructed using AIPW can achieve well-calibrated coverage for the target causal

effect under even very weak overlap. I consider the AIPW estimator with a sequence of clipping thresholds

bn,

ψ̂AIPWclip (bn) =
1

n

n∑
i=1

µ̂(Xi) +
Di(Yi − µ̂(Xi))

max{ê(Xi), bn}
=

1

n

n∑
i=1

ϕ(Zi | bn, η̂), (1)

where η̂ is an estimate of the nuisance functions η = (e(·), µ(·)). Results for the trimmed AIPW estimator
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follow by analogous arguments. I consider the standard Wald confidence interval

[
ψ̂AIPWclip (bn) + zα/2σ̂n, ψ̂

AIPW
clip (bn) + z1−α/2σ̂n

]
,

with the standard error estimate

σ̂n = n−1/2

√√√√ 1

n

n∑
i=1

ϕ(Zi | bn, η̂)2 − ψ̂AIPWclip (bn)2.

I provide sufficient regularity conditions under which this standard confidence interval covers the standard

causal estimand ψ with probability tending to 1− α. The results are uniform, potentially including families

of distributions with overlap so weak that ψ nearly fails to be identified at all.

The key feature of the clipped AIPW estimator is that it is Neyman orthogonal with respect to nuisance

function errors. Under Neyman orthogonality, small errors in the propensity and outcome nuisance functions

near the true values have a squared effect on bias. Clipping can be viewed as an intentional error in

the estimated propensity function that increases bias in order to reduce variance and achieve asymptotic

normality. AIPW orthogonalizes the clipping step’s added bias, while IPW does not achieve such a debiasing.

I formalize this intuition to prove that the clipped AIPW estimator’s t-statistics can be well-calibrated

under appropriate regularity conditions. While the formal result requires some care to handle division by

arbitrarily small numbers, the main technical contribution is to characterize sufficient regularity conditions

for the Neyman orthogonality intuition to carry through.

I provide guarantees over a uniform version of Ma and Wang (2020)’s model family. I assume that

there is a lower bound on the CDF of the propensity score of the form P (e(X) ≤ π) ≤ Cπγ0−1, where

γ0 > 1 corresponds to a distribution tail index. γ0 = 2 corresponds to a uniform density bound under

which appropriate moments for IPW inference may barely fail to exist. When γ0 is allowed to be below 2,

the density of propensities around zero can be infinite and the unclipped AIPW estimator may fail to be

asymptotically normal. As γ0 tends to 1, increasingly weak overlap is allowed; when γ0 = 1, the average

treatment effect may cease to be identified.

These results for statistical inference require stronger convergence rate assumptions than are required

under strict overlap. Under strict overlap, a sufficient condition for valid inference with the AIPW estimator

is that the convergence rate rµ,n of the outcome regression estimator µ̂(·) and the convergence rate re,n of the

propensity score estimator ê(·) satisfy the product-of-errors condition n1/2rµ,nre,n → 0. Under weak overlap,

I require the stronger condition n1/2rµ,nr
min{1,γ0/2}
e,n → 0. This characterization creates an asymmetry

between the contribution of the outcome and propensity score rates: if the outcome regression estimator
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achieves a parametric consistency rate of n−1/2, then AIPW can accommodate an arbitrarily heavy inverse

propensity tail so long as the propensity score is consistent. Conversely, even if the propensity score is

estimated at a parametric rate, the outcome regression estimator may need to achieve a consistency rate as

fast as n−1/4 in order to accommodate very weak overlap. I show that these stronger rate requirements are

sharp, in the sense that if n1/2rµ,nre,n → 0 but n1/2rµ,nr
min{1,γ0/2}
e,n → ∞, then there exists a distribution

for which the nuisance rates rµ,n and re,n are insufficient to achieve valid Wald confidence intervals.

Further, I show that a given outcome regression rate may be more difficult to achieve under weak overlap.

I focus on Nadaraya-Watson regression under Hölder continuity restrictions on the conditional outcome mean

function. I show that the weak overlap tail parameter γ0 can play a role equivalent to adding d/(γ0 − 1)

dimensions under traditional outcome regression. The problem is that under weak overlap, certain regions

of the covariate space can have small propensities, and therefore can have few treated observations to

use in regression. As a result, a given outcome regression rate may require unusually strong smoothness

assumptions.

This paper leverages these theoretical results to provide a precise answer to how much weak overlap doubly

robust t-statistics can handle. Under a Lipschitz-continuity restriction on the conditional mean outcome

and βe-order Hölder continuity of the propensity function, clipped AIPW can handle a tail parameter as

small as 2(d+1)+d2/βe

d+2 . In one dimension, an infinitely-differentiable propensity function allows for reliable

Wald confidence intervals if γ0 > 5
3 . Under outcome Lipschitz-continuity, any βe > d2/2 allows Wald

confidence intervals to be valid under some level of overlap weakness that keeps unadjusted IPW from being

asymptotically normal.

I leverage these new theoretical results to provide new guidance for empirical work. I provide several rules

of thumb for the choice of clipping threshold. In my favored regime, the econometrician is willing to posit a

minimal consistency rate for one of the two nuisance function estimates. Such a minimal rate is often implied

by theoretical justifications for a given nuisance estimator. I provide simple rules of thumb that estimate the

clipping threshold that imposes the laxest possible requirement on the other nuisance estimator in order to

guarantee Wald confidence interval validity. A third rule of thumb calculates a clipping threshold based on

imposing an equal minimal consistency rate on both the outcome and propensity nuisance estimates. This

final rule of thumb is theoretically attractive, but practically inconvenient due to the relative difficulty of

outcome regression under weak overlap.

I also provide some intuition for clipped or trimmed AIPW with parametric nuisance estimates. When

both the outcome and propensity functions are estimated at consistent parametric rates, my existing analysis

applies and Wald confidence interval validity follows. If neither is consistent, then AIPW and IPW are

inconsistent. The more interesting cases involve when only one nuisance is estimated consistently. In this
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case, clipped AIPW remains asymptotically normal. However, the behavior diverges in a similar manner to

Ma et al. (2023)’s analysis of trimmed AIPW with tailored debiasing. With only a consistent propensity

estimate, clipped AIPW will have first-order bias like clipped IPW. However, with a consistent parametric

outcome estimate, clipped AIPW should be asymptotically normal around the standard causal effect.

In simulations, I find that clipped AIPW achieves the promised properties asymptotically. I consider a

setting of very weak overlap with nonparametric local linear outcome regression and propensity estimates.

Unadjusted IPW and AIPW estimators perform poorly, with large errors and non-normal asymptotic t-

statistic distributions. Clipped IPW displays its known asymptotic normality with first-order bias. Clipped

AIPW achieves smaller bias than clipped IPW. With access to 1,000 or 10,000 observations, I find that

p-values based on clipped AIPW t-statistics exhibit moderate overrejection. In large samples with 100,000

observations, a Kolmogorov-Smirnov test based on 5,000 simulations is unable to reject a null hypothesis

that clipped AIPW p-values on the true effect are exactly uniformly distributed.

I apply the clipped AIPW estimator to data on right heart catheterization. I consider the setting of

Connors et al. (1996), which has become a canonical setting with weak overlap, including providing the

empirical application for Crump et al. (2009)’s paper proposing a 10% trimming rule of thumb. I compare

clipped AIPW with a rule-of-thumb clipping threshold to an AIPW estimator applied to the 10% trimmed

sample. I find that by including observations with small estimated propensities, the clipped AIPW strategy

increases the estimated harm of the procedure by 0.17 standard errors, while increasing the estimated

standard error by 5.1%. These results show that targeting the full-population treatment effect does not need

to introduce a major efficiency loss.

Related Literature. Weak overlap is a common phenomenon in practice and in theory. The dominant

response to weak overlap in inverse propensity score practice is trimming: dropping samples with small

propensity estimates in order to estimate average effects within a more precise population (Currie and

Walker, 2011; Bailey and Goodman-Bacon, 2015; Galiani et al., 2005), typically following the 10% rule of

thumb from Crump et al. (2009). Other work for estimating causal effects includes proposals to reweight

towards higher-precision populations (Yang and Ding, 2018; Li et al., 2018) or clipping strategies to Winsorize

weights above (Lee et al., 2011; Ionides, 2008).1 D’Amour et al. (2021) argue that weak overlap is likely to

be prevalent in modern settings with high-dimensional covariates. Imbens (2004) argues that changing the

target estimand may be necessary in the absence of sufficient precision.

The theoretical literature so far has either proposed a nonstandard causal estimator, targeted a non-

standard causal estimand, or required nonstandard techniques to construct confidence intervals. Khan and

1Awkwardly, the epidemiological literature sometimes refers to the Winsorization strategy as “trimming.” My results hold for
both dropping or Winsorizing extreme propensities, so the confused reader can view this as a work deriving simple asymptotics
for trimmed AIPW regardless of their preferred meaning of “trim.”
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Tamer (2010) show that very weak overlap yields an irregularly identified parameter, an infinite semipara-

metric efficiency bound, a limitation to slow estimation rates for the traditional average causal effects, and no

clear notion of best estimator. An important theoretical literature has proposed novel point and confidence

interval estimators with desirable properties under weak overlap (Rothe, 2017; Armstrong and Kolesár, 2017,

2021; Sasaki and Ura, 2022; Ma et al., 2023; Chaudhuri and Hill, 2024), but to my knowledge there has been

little take-up by practitioners. Ma and Wang (2020) and Khan and Ugander (2022) show that sufficiently

trimmed AIPW and IPW can remain asymptotically normal, but at the cost of introducing first-order bias

for the standard causal effects that often calls for a nonstandard debiasing strategy. Crump et al. (2009),

Yang and Ding (2018), Li et al. (2018), and Goldsmith-Pinkham et al. (2024) propose targeting estimators

that are easier to estimate under weak overlap; when the econometrician prefers to target the traditional

average causal effect that I consider here, then these proposals introduce a discontinuous estimand based on

whether or not the econometrician detects meaningful overlap weakness. Ma and Wang (2020) and Heiler and

Kazak (2021) propose using self-normalized subsampling methods that enable valid statistical inference for

standard estimands without clipping or trimming, but empirical practice has favored simple t-tests. Heiler

and Kazak also find that estimated untrimmed AIPW is first-order equivalent to an oracle estimator with

an asymptotic alpha-stable distribution if the product of nuisance estimation rates is of a lower order than

the oracle standard deviation; I find this result does not extend to the clipped AIPW estimator that I show

is asymptotically normal. Ma et al. (2024) and Lei et al. (2021) propose statistical tests under a null of

sufficient or strict overlap, respectively, presumably in the hopes of avoiding these complications. Relative

to these procedures, I analyze a standard procedure of estimating the standard outcome and propensity

nuisance functions, clipping or trimming extreme propensity scores, and then building Wald confidence in-

tervals. The only difference from common practice under strict overlap is the simple clipping or trimming

step, and the only difference from common practice under weak overlap is the use of a clipping threshold

that goes to zero and the requirement of an AIPW estimator that debiases error in the clipped region.

The plan of the paper is as follows. Section 2 presents the setting and main theoretical results. Section 3

interprets these results by considering special cases, proving limitations of these results, and proposing rules

of thumb for empirical use. Section 4 presents numerical results for simulations and the empirical application

to right-heart catheterization. Section 5 concludes.

Notation. I follow Heiler and Kazak (2021) and use “strict overlap” to refer to the case in which there

is some ϵ > 0 such that e(X) ≥ ϵ almost surely; I use “weak overlap” to refer to the case in which the

infimum of the support of e(X) is zero, which is sometimes called “limited overlap” (Khan and Tamer,

2010; Chaudhuri and Hill, 2024). I focus my attention on distributions with weak overlap that may pos-

sess subexponential tails. I use “very weak overlap” to refer to case in which the associated heavy tails
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can fail to generate inverse propensity second moments, a class which is sometimes called “heavy tailed”

(Chaudhuri and Hill, 2024). I use “somewhat weak overlap” to refer to the case in which I allow only

subexponential tails that do not yield very weak overlap, a class which is sometimes said to satisfy “strict

overlap” or “strong overlap” (Heiler and Kazak, 2021). I write ψ̃AIPW(Orcl) (bn) = 1
n

∑
ϕ(Z | bn, η) for the

oracle AIPW estimate with clipping threshold bn and σn = n−1/2
√

1
n

∑
ϕ(Z | bn, η)2 − ψ̃AIPW(Orcl) (bn)

2 and

σ̂n = n−1/2

√
1
n

∑
ϕ(Z | bn, η̂)2 −

(
1
n

∑
ϕ(Z | bn, η̂)

)2
for the associated oracle and estimated sample stan-

dard deviation, respectively. I refer to regions of the covariate space in which the propensity can be arbitrarily

close to zero as singularities. I use the notation EP [·] and E[·] to refer to the expectation under the main-

tained distribution P , and I use the notation ψ(P ) to refer to EP [EP [Y | X,D = 1]] where the right-hand

side is well-defined under P . I abuse notation and write supP∈AB to refer to the supremum of B over

distributions P in A under any maintained restrictions on the distribution and nuisance functions. I write

that a set of nuisance functions are cross-fit if the data is partitioned into K folds and the nuisance functions

in fold k are independent of the data in fold k. I write An ≤P Bn to refer to the case that for all ϵ > 0,

P (An > Bn+ϵ) → 0. I write P (En) for the probability of event En occurring under the distribution P , with

the number of draws n sometimes left implicit. I use the notation cn ≪ dn for nonnegative sequences cn, dn

to indicate that dn > 0 for all n large enough and cn/dn → 0. I use the notation cn ≾ dn and dn ≿ cn to

indicate that there is some δ > 0 such that dn ≥ δcn for all n large enough. I write cn = oP (dn) for sequence

of dn > 0 to indicate that for all δ > 0, P (|cn|/dn > δ) → 0; if there is only one distribution in a statement,

cn = o(dn) should be understood to mean cn = oP (dn). I use log to refer to the natural logarithm and a∨ b

to indicate max{a, b}. I define Hölder smoothness using a multivariate version of the notation of Tsybakov

(2009): a function f is in the Hölder smoothness class Σ(β, L) if the ⌊β⌋-order multivariate derivatives Dαf

satisfy ∥Dαf(x)−Dαf(x′)∥ ≤ L∥x− x′∥β−⌊β⌋. For simplicity, I use Nadaraya-Watson regression to refer to

specifically regression with uniform bandwidth: I write µ̂(NW )(x | h) =
∑
D1{∥X−x∥≤h}Y∑
D1{∥X−x∥≤h} when feasible and

µ̂(NW )(x | h) = 0 when no nearby treated observations are available.

2 Setting, Consistency, and Asymptotic Normality

This section presents the core theoretical results for asymptotic normality.

2.1 Setting

I derive uniform convergence rates under lower bounds on overlap weakness. I follow Ma and Wang (2020)

and parameterize overlap weakness through a tail parameter γ0. Unlike their analysis, the results will be

uniform over a model family P satisfying certain restrictions. The first is some basic regularity conditions.
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Assumption 1. Let P be a nonempty family of distributions that satisfy the following conditions for some

M, q, σmin, πmin, C, γ0:

(a) Conditional moments. E[|Y − E[Y | X,D]|q | X,D] ≤Mq <∞ almost surely for some q > 3.

(b) Unconditional moments. V ar(E[Y | X,D = d]) ≤M .

(c) Residuals. Var(Y | X,D) ≥ σ2
min > 0 almost surely.

(d) Treated fraction. 1− πmin ≥ P (D = 1) ≥ πmin > 0.

(e) Propensity tail. P (e(X) ≤ π) ≤ Cπγ0−1 for all π ∈ [0, 1] and some γ0 > 1.

For a distribution P ∈ P, I abuse notation by writing ψ = EP [EP [Y | X,D = 1]].

Definition 1 generalizes Ma andWang (2020)’s slowly varying tails assumption. Assumptions 1(a) through

1(d) are regularity conditions that rule out cases like perfectly predictable outcomes. Assumption 1(e)

provides the substantial restriction on P: overlap may be weak in the sense that γ0 is finite, but there

is some minimal γ0 and C that provides a lower bound on the propensity’s tail behavior. Under strict

overlap, Assumption 1(e) holds for any finite γ0 > 1, and most results here will hold by replacing γ0 with

infinity. Under weak overlap, Assumption 1(e) may only hold for some values of γ0, in which case the inverse

propensity distribution may be heavy-tailed. As Ma and Wang note, the case γ0 = 2 roughly corresponds

to a uniform distribution of propensities near the origin, and is the knife-edge case at which unclipped IPW

and AIPW estimators become non-Gaussian. I refer to the case γ0 > 2 as the “somewhat weak overlap” case

and refer to the case of γ0 < 2 as the “very weak overlap” case. As γ0 shrinks below 2, overlap is permitted

to be increasingly weak. γ0 ≤ 1 corresponds to no bound on the propensity distribution.

I will require certain rates on the nuisance functions e(X) and µ(X). I write the worst-case rates as re,n

and rµ,n.

Assumption 2 (Cross-fitting). The nuisances µ̂ and ê are estimated with cross-fitting with a fixed number of

folds K. If nk is the number of observations per fold, then infk nk/ supk nk → 1. Further, for all k ∈ 1, . . . ,K

and all P ∈ P, the cross-fit nuisances satisfy the uniform consistency rates EP [∥µ̂(−k)
n − µ∥∞] ≤ rµ,n and

EP [∥ê(−k)n − e∥∞] ≤ re,n where rµ,n, re,n are uniformly bounded above.

Cross-fitting is a common strategy for simplifying the analysis of Neyman-orthogonal estimators like

AIPW (Chernozhukov et al., 2018). In practice, nuisances satisfying Assumption 2 may only be achieved

with arbitrarily high probability. The uniformity condition is needed to handle regions of x with singularities,

but can be bypassed with L2 error conditions in other regions. Such uniformity assumptions are standard

in studying semiparametric estimators under irregular identification (Semenova, 2024).
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2.2 Estimator and Consistency

My formal analysis considers the clipped AIPW estimator with cross-fit nuisance function estimates. I

begin by providing sufficient conditions for consistency.

Recall that the clipped AIPW estimator of ψ is:

ψ̂AIPWclip (bn) =
1

n

K∑
k=1

∑
i∈Fk

ϕ
(
Zi | bn, η̂(−k)

)
,

where ϕ(Z | b, η̂) = µ̂(X)+ D(Y−µ̂(X))
max{ê(X),b} . In that equation, Fk is the set of observations i randomly partitioned

in fold k, η̂(−k) is the nuisance function estimates constructed only on observations in folds other than k,

and ϕ is defined in Equation (1). The unclipped AIPW estimator is the special case of bn = 0. I analyze the

clipped AIPW estimator because results for the trimmed AIPW estimator follow somewhat more easily.

A standard result for the unclipped AIPW estimator is double robustness: when e(X) is bounded away

from zero, unclipped AIPW is consistent for ψ if either re,n or rµ,n tends to zero. The existence of weak

overlap introduces a subtlety to double robustness.

Proposition 1 (Consistency). Suppose bn satisfies n−1/2 ≪ bn ≪ 1, the conditions of Assumption 2 hold,

and either (i) re,nb
min{γ0−2,0}
n → 0 or (ii) rµ,n

re,n+bn
bn

→ 0. Then for all ϵ > 0,

sup
P∈P

P
(∣∣∣ψ̂AIPWclip (bn)− ψ(P )

∣∣∣ > ϵ
)
→ 0.

Condition (i) is a stronger condition than the classic strict overlap condition that re,n or rµ,n tends

to zero. It requires that re,n go to zero faster than b2−γ0n , so that as overlap is allowed to be weaker, the

propensity consistency rate may need to be as fast as bn itself. Condition (ii) is also a stronger condition than

the classic rµ,n → 0 condition. The condition allows for a meaningful fraction of the data may be clipped

even asymptotically, in which case the outcome regression error rate must offset the positive probability of

assigning an inverse propensity weight of b−1
n .

These theoretical results provide sufficient conditions for black-box nuisance estimators and clipping

thresholds to yield valid Wald confidence for the usual average treatment effect. In the next section, I

attempt to interpret these results, provide some key limitations that may not be obvious on first appearance,

and use these theoretical results to propose some rules of thumb for empirical use.
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2.3 Statistical Inference

This subsection presents the main theoretical claims of the paper. It shows that under suitable rate

restrictions, the clipped AIPW estimator is first-order equivalent to an oracle clipped AIPW estimator,

both estimators are consistent and asymptotically normal, and simple Wald confidence intervals are well-

calibrated.

A common strategy for deriving confidence intervals for unclipped AIPW under strict overlap is Neyman

orthogonality. In those classic settings, the difference between the feasible AIPW estimator with estimated

nuisance functions and the hypothetical oracle AIPW estimator with known nuisance functions is

1

n

∑
ϕ(Z | 0, η̂)− ϕ(Z | 0, η) = 1

n

∑
(µ̂− µ)

(
D

ê
− 1

)
+ (Y − µ)

(
D

ê
− D

e

)
.

Intuitively, the regression errors µ̂ − µ are debiased by the inverse propensity D
ê estimates of the number

one. As a result, in classical settings, slowly consistent nuisance estimates can yield quickly consistent

causal estimates. When all nuisances are consistent at o(n−1/4) rates and e(X) is bounded away from zero,

estimation error in inverse propensities is of the same order as estimation error in the propensities themselves,

classical AIPW estimates are first-order equivalent to oracle estimates with known nuisances, and simple

Wald confidence intervals cover the true causal effect by appeal to the oracle AIPW estimator.

Under very weak overlap, the clipped AIPW estimator does not obtain the standard AIPW orthogonality

benefit. The analogous decomposition for clipped AIPW is

1

n

∑
ϕ(Z | bn, η̂)− ϕ(Z | bn, η) =

1

n

∑
(µ̂− µ)

(
D

max{ê, bn}
− 1

)
+ (Y − µ)

(
D

max{ê, bn}
− D

max{e, bn}

)
.

Above the clipping threshold bn, the clipped AIPW estimator’s nuisance estimation error enjoys a product-

of-errors character that is similar to classical settings, albeit without the usual ability to interchange between

propensity and inverse propensity error. Below the clipping threshold, the regression errors are not orthogo-

nalized by a consistent propensity estimate. No wonder the previous literature for IPW under weak overlap

has targeted nonstandard estimands or appealed to nonstandard procedures.

I exploit that the clipped AIPW estimator enjoys a subtly different form of orthogonality. For observations

below the clipping threshold, the clipped AIPW estimator fails to orthogonalize regression error using the

propensity estimates. However, as the clipping threshold tends to zero, increasingly little mass is clipped so

that regression error in the clipped region has an increasingly small effect on bias.

The orthogonality-by-reducing-bn character of clipped AIPW introduces a tradeoff. Smaller clipping

thresholds bn introduce less bias from clipping. Larger clipping thresholds bn make the product-of-errors

10



condition above bn more manageable. My formal contribution is to show that there can be a Goldilocks

range where bn tends to zero neither too quickly nor too slowly, so that the clipped AIPW estimator is

first-order equivalent to the oracle AIPW estimator and is asymptotically normal.

My results for asymptotic normality and statistical inference will proceed under the following rate re-

quirements.

Assumption 3 (Minimal rates). Assumption 2 holds, with the following rates on the regression error rµ,n

and the propensity error re,n:

(a) Consistency. rµ,n, re,n → 0.

(b) Product of errors. For some η > 0, rµ,nre,n

(
1 + b

(γ0−2)/2
n nη

)
≪ n−1/2.

(c) Regression error near singularities. rµ,nb
γ0/2
n ≪ n−1/2.

(d) Asymptotically known thresholding. re,n ≪ bn.

I discuss these rates further in Section 3.1: for example, when γ0 = 1.5 and rµ,n = n−1/5, then re,n ≪

n−0.4 will suffice for these conditions, provided re,n ≪ bn ≪ n−0.4. Shared regression rates of n−1/3 will

always suffice for these conditions, provided the clipping threshold bn goes to zero at a rate sufficiently close

to n−1/3. Under very weak overlap (γ0 ∈ (1, 2)), the product-of-errors condition (b) is stronger than the

standard product-of-errors condition rµ,nre,n ≪ n−1/2. I only analyze cases in which re,n ≪ bn, so that the

expected misclassification rate between oracle and estimated clipping tends to zero. These rates are always

weaker than joint n−1/2 rates achievable with parametric assumptions. Propensity rates under weak overlap

are no more difficult than common practice. Outcome regression rates can be more difficult in the regions of

singularities with small propensity values, both because of reduced treated observations and the possibility

of irregular designs.

Stronger rates will be needed to handle unusual distributions. I therefore provide two alternative further

assumptions: a distributional smoothness assumption and a faster-rate assumption.

Assumption 4 (Nongeneracy or faster rates). One of the following two conditions hold:

(i) Nondegenerate overlap. There exists some ρ > 0 such that for all P ∈ P and π ∈ [0, 1], P (e(X) ≤

π/2) ≤ (1− ρ)P (e(X) ≤ π).

(ii) Faster rates. rµ,nb
(γ0−1)2/γ0
n ≪ n−1/2.

Assumption 4(i) is a uniform version of the requirement that P (e(X) ≤ x) = c(x)xγ0−1 for c(x) tending

to a constant at zero. The definition formalizes the notation that a distribution may place some weight

near the origin, but it may not place weight at arbitrarily adversarial points near the origin. When γ0 < 2,
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Assumption 4(ii) is stronger than Assumption 3(c). As γ0 tends to one, the condition approaches the

parametric requirement rµ,n = O(n−1/2).

I now provide the main theoretical result.

Theorem 1 ((Slow) Asymptotic Normality). Suppose bn satisfies n−1/2 ≪ bn ≪ 1, and Assumptions 1, 2,

3, and 4 hold. Then the clipped AIPW estimator is oracle-equivalent:

lim
n→∞

sup
P∈P

σ−2
n EP

[(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)2]
= 0.

Further, clipped AIPW is asymptotically normal:

lim
n→∞

sup
P∈P

sup
t∈R

∣∣∣∣∣P
(
ψ̂AIPWclip (bn)− ψ(P )

σ̂n
≤ t

)
− Φ(t)

∣∣∣∣∣ = 0.

Theorem 1 is the core theoretical claim of this paper. The first result shows that the clipped AIPW

estimator is first-order equivalent to an oracle estimator with known nuisances: the effect of nuisance esti-

mation error on the treatment effect estimate tends to zero faster than the standard deviation of the oracle

estimator. The second result leverages this first-order equivalence to characterize the asymptotic distribu-

tion of the clipped AIPW estimates and t-statistics: the estimator is asymptotically normal, and estimated

t-statistics are asymptotically standard normal.

Both results are standard for AIPW under strict overlap, but substantial care is required to handle

unbounded inverse propensities under weak overlap. The argument for normality builds on Ma and Wang

(2020)’s proof that aggressively-trimmed IPW with known propensities achieves asymptotic normality with

first-order bias. I extend their argument to a uniform family of distributions using the Berry-Esseen Theorem.

Because AIPW is a debiasing estimator, this first extension shows that trimmed or clipped AIPW with known

nuisance functions achieves asymptotic normality with zero bias. The task of Theorem 1 is to show that

replacing the true nuisances with estimated nuisances has a second-order effect on clipped AIPW estimates

under appropriate conditions. This is nontrivial, because under weak overlap, there is an asymptotically

unbounded number of observations with arbitrarily large inverse propensities with even known nuisance

functions. Nevertheless, by taking appropriate care and leveraging that clipping introduces bias by increasing

propensities and reducing inverse propensities, I am able to show that the effect of nuisance estimation is

second-order even under such weak overlap that unadjusted AIPW fails to be asymptotically normal and no

regular root-n estimators exist.

A careful analysis Assumption 3 suggests that smaller values of bn are preferable because they admit

weaker rate requirements. However, the following result shows that such robustness does not come for free.
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I first characterize the consistency rate of a generic estimate as follows.

Proposition 2 (Black-box consistency rate). Suppose the assumptions of Proposition 1 hold. Then there ex-

ist positive constants cmin and cmax such that cminn
−1EP

[
D

max{e(X),bn}2

]
≤ σ2

n ≤ cmaxn
−1EP

[
D

max{e(X),bn}2

]
for all P ∈ P, where σ2

n = n−1
(

1
n

∑
ϕ(Z | bn, η)2 − ψ̃AIPW(Orcl) (bn)

2
)
is the oracle sample variance.

Weaker overlap corresponds to larger values of EP [D/max{e(X), bn}2] and slower consistency rates.

Conditional on P , larger values of bn correspond to a smaller value of EP [D/max{e(X), bn}2], faster oracle

consistency rate, and greater asymptotic power.

Proposition 2 implies a worst-case consistency rate over distributions in P.

Corollary 1 (Worst-case consistency rate). Suppose γ0 < 2 and let bn be a fixed sequence of bn satisfying

1 ≫ bn ≫ n−1/2. There exists a C ′ > 0 such that for P satisfying Assumption 1, C ′n−1bγ0−2
n ≥ supP∈P σ2

n

for all n large enough. Further, there exists a (single-element) family P satisfying Assumption 1 and a

C ′′ ∈ (0, C ′) such that supP∈P σ2
n ≥ C ′′n−1bγ0−2

n for all n large enough.

The combination of Corollary 1 and Theorem 1 yields a trade-off: smaller values of bn yield laxer

requirements on regression estimation near singularities, but lead to larger variance and slower consistency.

The rate n−1bγ0−2
n is a worst-case consistency rate in bn: every distribution in P achieves a consistency at

least as fast as n−1bγ0−2
n , and it is possible to find a distribution for which the consistency rate is no faster.

Finally, I show that Theorem 1 yields the natural result for inference: simple t-tests based on Wald

confidence intervals are well-calibrated.

Corollary 2 (T-tests are well-calibrated). Suppose the conditions of Theorem 1 hold. Consider the Wald

confidence interval Ĉn =
[
ψ̂AIPWclip (bn) + zα/2σ̂n, ψ̂

AIPW
clip (bn) + z1−α/2σ̂n

]
. Then

lim sup
n→∞

sup
P∈P

∣∣∣P (ψ(P ) ∈ Ĉn)− (1− α)
∣∣∣ = 0.

Taken together, this sub-section yields a remarkable result for practice. The distribution P may place so

much propensity mass near the origin that the semiparametric efficiency bound is infinite, the lower bound

on the density of propensity mass near the origin can be so weak that identification nearly fails, and the

nuisance estimator may be so poorly designed that it pushes all observations’ estimated propensities towards

the origin at a slower-than-parametric rate. Nevertheless, Neyman orthogonality is sufficiently powerful to

ensure the validity of the simple t-test.

The next sub-section interprets the rate requirements I impose in a few special cases, and then derives

sufficient conditions to achieve these nuisance rates.
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3 Interpretation and Lessons for Empirical Practice

This section analyzes the regression rates needed to achieve Theorem 1 under Assumption 4(i). First,

I use some special cases to provide intuition for the nuisance error rates I request: for example, a shared

consistency rate of n−1/3 will always suffice for valid Wald confidence intervals to exist. I then provide

some key limitations of these results: the required product-of-errors rate may be more stringent than the

usual n−1/2 requirement, and a given outcome regression rate may be more difficult to achieve. In the third

subsection, I prove some rules of thumb for choosing a clipping threshold for practitioners that do not feel

comfortable taking a strong stance on regression rates. Finally, I provide some intuition and AIPW and

IPW with parametric estimator functions that may be correctly or incorrectly specified.

3.1 Rate Condition Special Cases

This section interprets the rate requirements of Theorem 1 under various special cases. The main re-

quirement is that rµ,nr
γ0/2
e,n goes to zero faster than n−1/2. As a result, outcome regression rates are more

valuable than nominally equivalent propensity rates under very weak overlap.

I consider the Assumption 4(i) rate requirements in a few special cases. I omit an analysis of the stronger

rate requirement in Assumption 4(ii) that would be needed to handle degenerate distributions.

Assumption 5. Assumptions 1, 2, and 4(i) hold, and re,n, rµ,n → 0.

This assumption rules out degenerate forms of weak overlap.

I now provide sufficient conditions for Wald confidence interval validity under various special cases of

overlap weakness.

Example 1 (Strict overlap). Suppose Assumption 5 holds and either (i) there is strict overlap and rµ,nre,n ≪

n−1/2, or (ii) there is somewhat weak overlap re,n = o(n−η) for some fixed η > 0, and rµ,nre,n ≪ n−1/2.

Then there exists a bn → 0 such that clipped AIPW t-statistics are asymptotically well-calibrated.

Example 2 (Second moments barely fail to exist). Suppose Assumption 5 holds for γ0 = 2 and there is

some η > 0 such that rµ,n, re,n ≪ n−1/4−η. Then there exists a bn → 0 such that clipped AIPW t-statistics

are asymptotically well-calibrated.

Example 3 (Shared rates, very weak overlap). Suppose Assumption 5 holds for some γ0 > 1 and rµ,n, re,n ≪

n−1/3. Then there exists a bn → 0 such that clipped AIPW t-statistics are asymptotically well-calibrated.
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Example 4 (Parametric rates). Suppose Assumption 5 holds for some γ0 > 1 and there is some fixed η > 0

such that either (i) rµ,n = O(n−1/2) and re,n = o(n−η) or (ii) re,n = O(n−1/2) and rµ,n = o(n(γ0−2)/4−η).

Then there exists a bn → 0 such that clipped AIPW t-statistics are asymptotically well-calibrated.

These examples help characterize the product-of-rates condition I ask for under weak overlap. I next

provide two important limitations of these characterizations: the product of errors condition is always more

stringent than the usual product requirement, and any given outcome regression rate may also be more

difficult to achieve.

3.2 Limitations

So far, this work has focused on the theoretical advantages of clipped or trimmed AIPW for analysis:

under suitable outcome and propensity regression rates and threshold rates, the standard Wald confidence

intervals exhibit asymptotically exact coverage of the standard causal estimands. In practice, there are

important limitations to these results. I formally prove that under weak overlap, more the required product

of errors of nuisance errors and any given rate for outcome errors both become more difficult to achieve.

The usual product-of-errors condition under strict overlap often takes a form like rµ,nre,n ≪ σn, where

σn is the standard deviation of the Oracle estimator. For example, Heiler and Kazak (2021) argue that

this condition is sufficient for estimated unclipped AIPW to be first-order equivalent to an oracle estimator.

An alternative characterization of the usual product-of-errors condition that is more stringent under weak

overlap is a requirement rµ,nre,n ≪ n−1/2. I now show that even this requirement is insufficient for clipped

AIPW Wald confidence intervals to be valid.

Corollary 3 (Clipping makes product-of-errors more stringent). Fix γ0 ∈ (1, 2), some target coverage level

α ∈ (0, 1), some sequence of clipping thresholds bn such that n−1/2 ≪ bn ≪ 1, and some sequence of re,n and

rµ,n such that Assumptions 3(a) and 3(d) hold, but Assumption 3(c) does not hold. Then there is a family

P and nuisance estimators µ̂ and ê such that Assumption 1, Assumption 2, and Assumption 4(i) hold for

these rates and this γ0, but Wald confidence intervals have the zero-coverage property that for all P ∈ P,

P (ψ(P ) ∈ Ĉn) → 0.

The intuition is the heuristic from Section 3.1: a sufficient condition for Wald confidence interval validity

is rµ,nr
min{γ0,2}/2
e,n ≪ n−1/2. When γ0 < 2, there is a range of nuisance estimates such that rµ,nre,n ≪

n−1/2 ≪ rµ,nr
min{γ0,2}/2
e,n and estimation bias can be of a higher order than the oracle variance.

A given product of rates can also be more difficult to achieve under weak overlap. The added challenge

comes from outcome regression. Clipped AIPW needs to estimate E[Y | X,D = 1] accurately in precisely

the regions in which P (D = 1 | X) is smallest. As a result, an outcome regression rate rµ,n can become more
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difficult to achieve under weak overlap: there are fewer treated observations in some regions, and the density

of treated observations can be chosen to introduce a shape for which outcome regression more difficult. I

characterize the harm in the case in which the harm is solely the reduction in treated observations, and leave

a characterization of outcome regression with potential degenerate designs to future work.

I characterize optimal outcome regression rates for Nadaraya-Watson regression. Nadaraya-Watson re-

gression estimates E[Y | X,D = 1] using a kernel-weighted average of observed treated outcomes. Under

strict overlap and with Hölder continuity of order βµ ∈ (0, 1], the Nadaraya-Watson estimator achieves the

optimal pointwise consistency rate of n−βµ/(2βµ+d), and can be used to achieve the optimal global consis-

tency rate with an associated polylog penalty (Stone, 1982). Note that I focus on kernel regression estimates

of E[Y | X,D = 1]. Faster rates can be obtained by thoughtfully leveraging smoothness assumptions in

E[Y | e(X), D = 1] (Ma and Wang, 2020; Sasaki and Ura, 2022; Ma et al., 2023). It may also be possible

to obtain faster rates for E[Y | X,D = 1] under stronger outcome smoothness assumptions, but I focus on

Nadaraya Watson to avoid subtle design degeneracy issues under weak overlap.

I characterize the optimal Nadaraya-Watson regression rate under Hölder continuity. For convenience, I

fix the domain of the covariates to be a specific hypercube in Rd.

Assumption 6 (Hölder smoothness and fixed domain). Assumption 4(i) holds for some fixed ρ > 0 and

for all P ∈ P, X is continuously distributed over [−1, 1]d with a uniform lower density bound and µ(X) =

EP [Y | X,D = 1] is in the Hölder smoothness class Σ(βµ, L) for some βµ, L > 0. .

Hölder continuity is the standard assumption to motivate Nadaraya-Watson regression. IfX is distributed

uniformly on [−1, 1]d, then a simple worst-case propensity score is some function proportional to ∥X∥d/(γ0−1).

Such a propensity score has a propensity tail of the form P (e(X) ≤ π) ∼ πγ0−1 for small enough π, and

ensures the fewest possible treated observations near the point X = 0.

For convenience, I write Θ for the space of parameters defining the restrictions in Assumption 6, and abuse

notation and write P(θ) for the set of families P that satisfy this assumption for a set of parameters θ. I

focus on the Nadaraya-Watson case and pointwise rates for simplicity in this work. Higher-order smoothness

assumptions allow for local polynomial regression with potentially subtle dynamics of associated eigenvalues

(Hall et al., 1997; Gäıffas, 2005, 2009), and it unclear whether the usual polylog penalty for global rates is

necessary under weak overlap.

In the worst case, weak overlap of order γ0 − 1 plays a role equivalent to increasing the number of

covariates by d/(γ0 − 1).

Proposition 3 (Minimax Nadaraya Watson regression rates). The optimal Nadaraya-Watson pointwise

regression rate is rn = n−βµ/(2βµ+d+d/(γ0−1)): there is a function C ′ : Θ → R and a sequence of functions
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hn : Θ → R such that:

(i) If P ∈ P(θ) and δn → ∞, then lim supn→∞ supP∈P,x0
P
(∣∣µ̂(NW )(x0 | hn(θ))− µ(x0)

∣∣ ≥ δnrn
)
→ 0.

(ii) For every γ0 > 1, there is an associated θ ∈ Θ, P ∈ P(θ), and x0 ∈ [−1, 1]d such that

lim inf
n→∞

inf
P∈P,hn>0

P
(∣∣∣µ̂(NW )(x0 | hn)− µ(x0)

∣∣∣ ≥ C ′(θ)rn

)
> 0.

Under strict overlap, the known optimal pointwise rate n−βµ/(2βµ+d) corresponds to the case that γ0

infinite. When γ0 is finite, the rate in Proposition 3 is slower, with a loss equivalent to adding d/(γ0 − 1)

dimensions under strict overlap. As overlap is allowed to become increasingly weak and other parameters

are held constant, γ0 is reduced, there can be regions of the covariate space with increasingly few treated

observations, and the optimal Nadaraya-Watson rate is worse. In the limit in which γ0 tends to one, the

rate in Proposition 3 can become arbitrarily poor.

Proposition 3 yields minimal smoothness assumptions for Wald confidence interval validity. Recall that

the optimal propensity estimation rate under a Hölder smoothness restriction of order βe is n
−βe/(2βe+d). Also

recall that the heuristic sufficient condition for Wald confidence intervals to be valid for some clipping thresh-

old under Assumption 4(i) is rµ,nr
γ0/2
e,n ≪ n−1/2, or equivalently, log(rµ,n) + (γ0/2) log(re,n) ≪ log(n)−1/2.

Taken together, these conditions require:

2βµ
2βµ + dγ0/(γ0 − 1)

+
γ0βe

2βe + d
> 1. (2)

In the Lipschitz-continuity case βµ = 1, Equation (2) further reduces to βe >
d2

2(γ0−1)−d(2−γ0) , or equivalently,

γ0 > 2(d+1)+d2/βe

d+2 . When βe > d2/2, clipped AIPW can achieve asymptotically valid Wald confidence

intervals for some γ0 < 2. When d > 1, the econometrician must assume stronger smoothness restrictions

than Lipschitz continuity in order to achieve the necessary nuisance rate guarantees.

Equation (2) provides sufficient smoothness assumptions for some sequence of valid clipping thresholds to

exist. Before proceeding to applying clipped AIPW, I propose some rules of thumb for choosing a plausibly

valid clipping threshold.

3.3 Choice of Clipping Threshold

The theoretical analysis above shows that for some sequence of outcome and propensity error rates, the

clipped AIPW estimator can be asymptotically normal and centered around the true causal estimand for

some clipping rate. However, these results do not provide guidance for how to choose the clipping rate.
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I now propose some rules of thumb for the choice of a clipping or trimming threshold. I favor thresholds

that impose the weakest possible rate requirements necessary to achieve asymptotic normality for the average

treatment effect. that requirement corresponds to a smaller threshold with fewer clipped observations. Where

the econometrician is confident that they can achieve faster nuisance rate estimation, then a larger threshold

with more clipped observations will be able to achieve more precise estimates and better power than the

rules of thumb proposed here. I will always implicitly require that bn be no larger than n−1/2 log(n) to

ensure that at least the oracle clipped AIPW estimator will be asymptotically normal. I describe these rules

of thumb as being rules for clipped AIPW, but the logic also applies to trimmed AIPW.

The first two rules of thumb are based on scenarios in which the econometrician is confident of nuisance

estimation rates. I begin with the case in which the econometrician has implied a minimal rate of propensity

convergence. Suppose ê(x) is estimated through a version of local polynomial regression with ℓe derivatives.

The econometrician has implicitly assumed that e(x) has βe > ℓe degrees of Hölder smoothness, in which

case one can achieve a global consistency rate of (n/ log(n))−βe/(2βe+d) (Stone, 1982). In such a case, the

propensity rule of thumb would choose a clipping threshold on the order of bn = n−ℓe/(2ℓe+d). Any slower

rate would impose needless restrictions on the outcome regression rate, and any faster rate would only be

valid if the econometrician is willing to assume a smoothness level of some specific βe > ℓe. An interesting

avenue for future work is whether there is a convenient way to choose the constant in this process.

Under weak overlap, it is often easier to achieve faster convergence for propensity estimation than outcome

regression. A second rule of thumb is therefore based on minimal outcome regression rate r
¯µ,n

. I propose

choosing bn to set gn(bn) = 0, where

gn(b) =
1

n

∑ r
¯µ,n

1
n

∑
1{ê ≤ b}√

1
n

∑
D

max{ê,b}2

+ rµ,nr
¯µ

√
1

n

∑ D

max{ê, b}2
− n−1/2. (3)

Informally, this rule of thumb finds a clipping thresold bn such that if rµ,n ≪ r
¯µ,n

and re,n ≪ bn, then

clipped AIPW will achieve asymptotic normality around the target causal estimand. Any slower rate would

achieve needless restrictions on the propensity estimation rate, and any faster rate would only be valid if the

econometrician is willing to assume a faster outcome regression rate than r
¯µ,n

. This function is a plug-in

version of a combination of technical conditions presented in Assumption 3’. This rule of thumb has the

drawback that theoretical guarantees for rµ,n are not yet well-developed. I find in simulations that this rule

of thumb performs well when outcome regression rate guarantees are available.

A third rule of thumb is theoretically attractive, and prevents the need for the empirical researcher to
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specify any nuisance consistency rates. This proposal is to choose bn to solve fn(bn) = 0, where:

fn(b) =
b 1n
∑

1{ê ≤ b}√
1
n

∑
D

max{ê,b}2

+ b2

√
1

n

∑ D

max{ê, b}2
− n−1/2. (4)

This proposal is a plug-in version of the rule for gn. Informally, it corresponds to finding a sequence of bn

such that if rµ,n, re,n ≪ bn, then the clipped AIPW estimator will achieve asymptotic normality. This rule

of thumb is always feasible.

Lemma 1 (Well-defined rule of thumb). Suppose ê ∈ (0, 1] and
∑
D/ê > 0. Then there is exactly one bn

such that lim supb→b−n
fn(b) ≤ 0 ≤ lim infb→b+n

fn(bn).

In smooth applications, the rule of thumb in Equation (4) produces a clipping threshold on the order

of n−1/(2+γ0). If rµ,n, re,n both go to zero more quickly than this clipping threshold, then clipped AIPW

estimation with bn chosen to solve Equation (4) will produce valid confidence intervals for the standard

causal estimand. If rµ,n, re,n both go to zero more slowly than this clipping threshold, then no clipping

threshold will allow Wald confidence intervals to cover the standard causal estimand. If the econometrician

is to do better than this rule of thumb, then they must have application-specific knowledge of one of the two

nuisance rates that calls for a more specific approach than a generic rule of thumb. However, in practice,

a given outcome regression rate is often more difficult to achieve than a given propensity rate under weak

overlap, so I generally recommend using one of the first two rules of thumb where feasible.

3.4 Parametric Estimators and Misspecification

When both nuisance functions are estimated nonparametrically, then consistency is achievable and AIPW

is generally preferable under strict overlap. When both nuisance functions are estimated parametrically,

then it is possible for one or both nuisance function to be inconsistent and the choice of estimator may

be ambiguous. I now provide some intuition on the two estimators when nuisance functions are estimated

parametrically and through cross-fitting. I will consider IPW and AIPWwith the same sequence of thresholds

bn satisfying 1 ≫ bn ≫ n−1/2.

In this subsection, I will assume that parametric nuisance estimators η̂ achieve an L∞ error relative

to a limiting nuisance function η̄ that is the order of n−1/2. For example, consider logit estimation of

a propensity model of the form ē(X) = exp(X′β)
1+exp(X′β) for a pseudo-true parameter β. If the support of X

is bounded, then n−1/2-consistent estimate of β is sufficient to achieve n−1/2-consistent estimation of ē(X)

everywhere. However, weak overlap may emerge from unbounded tails, in which case the L∞ rate may not go

to zero. Unbounded covariates are an important case in general. For example, Ma and Wang (2020) motivate
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weak overlap tails through the distribution of covariates under a logistic propensity model. Nevertheless, a

careful treatment of parametric estimation of nuisances with unbounded covariates is outside the scope of

this work. I write that a nuisance estimate η̂ is consistent if it tends to the correct limit η̄ = η, and I write

that η̂ is inconsistent otherwise.

The analysis above is easiest to extend when either both or neither nuisance function is consistent. If both

the propensity and outcome regression estimates are inconsistent, then both the IPW and AIPW estimators

fail to be consistent, and as in the case of inconsistent nuisance functions with strict overlap, there is no

general reason to prefer one or the other. If both nuisance estimates are consistent, then the AIPW and

IPW estimators will be consistent and will have variance on the same order, but the IPW estimator may

have higher-order bias than the AIPW estimator. This higher-order bias follows because IPW can be viewed

as a particular case of AIPW with an inconsistent outcome regression estimator.

When the outcome regression estimate is inconsistent, there is no general reason to prefer IPW or

AIPW, but both estimators may have bias that is of a higher-order than the estimator’s standard deviation.

When µ̂ is inconsistent, both IPW and AIPW can be viewed as instances of AIPW with an inconsistent

outcome regression estimate. Suppose P is a distribution from the second half of Corollary 1, which has

P (e(X) ≤ π) ∼ πγ0−1 for all π small enough. The bias in the clipped (or trimmed) region with an inconsistent

outcome regression estimate is generally on the order of P (e(X) ≤ bn) ∼ bγ0−1
n . However, by Corollary 1, the

oracle AIPW (and oracle IPW) standard deviation is on the order of n−1/2b
γ0/2−1
n ≪ bγ0−1

n . This heuristic

analysis suggests that in many cases, IPW or AIPW-with-inconsistent-outcome-regression will have bias

that is of a higher order than the estimator’s standard error. That intuition is similar to Ma et al. (2023)’s

analysis of trimmed AIPW with a tailored debiasing procedure.

The case of a consistent outcome regression estimate with inconsistent propensity estimates is more

interesting. In this case, AIPW should have lower-order bias than IPW. The Berry-Esseen argument for

AIPW asymptotic normality with known nuisance functions only requires cross-fitting and bn to go to

zero slower than n−1/2, so that clipped or trimmed AIPW should also be asymptotically normal under

appropriate error product conditions. In this case, it is possible for there to be a blessing of weak overlap: if

there are enough clipped observations to induce a slower-than-n−1/2 standard error, then it is not clear that

with a consistent parametric outcome regression, nuisance estimation error has a first-order effect on the

causal estimate. This robustness intuition is useful, because I apply parametric nuisance estimators in the

application to right heart catheterization. Careful treatment of the parametric case is left for future work.
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4 Applications

In this section, I present simulated results for the clipped AIPW estimator as well as empirical results

from an application to right heart catheterization. I find that clipped AIPW performs very well under

weak overlap, producing nearly normal t-statistics and almost perfectly calibrated p-values with only 1,000

observations. When studying the right heart catheterization data, I find that the rule of thumb approach

increases the estimated harm of the procedure by 0.37 standard errors relative to the usual 10% trimming

rule, while reducing the estimated standard error by 2.3%.

4.1 Simulation Evidence

I now study the performance of the clipped AIPW estimator in simulations.

My simulation design is based on the design in Ma and Wang (2020). As in their work, I simulate data

with P (e(X) ≤ π) = πγ−1 and DY = κD(1− e(X))+D(ε− 4)/
√
8, where ε | X,D ∼ ξ24 is scaled to achieve

zero mean and unit variance. However, I increase γ from 1.5 to 1.8 to ensure feasible outcome regression

rates, set κ = 2 rather than κ = 1 to avoid a coincidental offset of IPW lower- and upper-tail bias in small

samples, and reduce DY by κE[D(1− e(X))] so that the true average potential outcome is zero. I achieve

this propensity distribution by taking X ∼ Unif([0, 1]) i.i.d. and setting e(X) = X1/(γ0−1). I present results

for 5,000 simulations of increasingly large samples.

I estimate both the propensity and outcome regressions with five-fold cross-fitting. I use shrinkage cubic

splines and REML estimation, as implemented by the mgcv package in R. In this setting, Proposition 3

establishes that outcome regression can achieve a pointwise rate of n−1/(3+1/(γ0−1)). I therefore choose the

clipping threshold bn based on Equation (3), assuming rµ,n ≪ n−1/5, which is implied by γ0 > 1.5.

I begin by summarizing point estimates in Figure 1. The unclipped estimators are approximately median-

unbiased, but possess sufficiently heavy inverse propensity tails that the mean performance gets worse with

increasing sample sizes. The clipped estimators perform much better, but the clipped IPW estimator exhibits

its known first-order bias. The clipped AIPW estimator exhibits less bias than the clipped IPW estimator,

and has slightly better performance in terms of mean squared error.

I find in Figure 2 that the clipped AIPW estimator’s t-statistics are reasonably well-calibrated. The

plot presents t-statistics on the true average potential outcome 1− (γ0− 1)/γ0. The t-statistics of unclipped

IPW and AIPW estimators are visibly non-Gaussian, and often exhibit a multimodal distribution. This poor

performance is unsurprising: the unclipped IPW and AIPW estimators are known to fail to be asymptotically

normal in this setting. Both the clipped IPW and AIPW estimators are known to be asymptotically normal

21



IPW (No Clip, n = 1e+05)

RMSE = 2.32e+15

AIPW (No Clip, n = 1e+05)

RMSE = 1.33e+15

IPW (Clip, n = 1e+05)

RMSE = 0.0136

AIPW (Clip, n = 1e+05)

RMSE = 0.00935

IPW (No Clip, n = 10000)

RMSE = 1.15e+12

AIPW (No Clip, n = 10000)

RMSE = 7.68e+11

IPW (Clip, n = 10000)

RMSE = 0.0332

AIPW (Clip, n = 10000)

RMSE = 0.0277

IPW (No Clip, n = 1000)

RMSE = 6.04e+08

AIPW (No Clip, n = 1000)

RMSE = 4.55e+08

IPW (Clip, n = 1000)

RMSE = 0.0835

AIPW (Clip, n = 1000)

RMSE = 0.08

0e+00 5e+15 1e+16 −5e+15 0e+00 5e+15 −0.04 −0.02 0.00 0.02 −0.04 −0.02 0.00 0.02

0e+002e+124e+126e+128e+12 −2e+120e+002e+124e+126e+12 −0.10−0.05 0.00 0.05 0.10 −0.10−0.050.00 0.05 0.10

0e+002e+094e+096e+098e+09 −2e+090e+002e+094e+096e+09 −0.2 0.0 0.2 −0.2 0.0 0.2 0.4
0
1
2
3
4
5

 0

 5

10

15

 0

10

20

30

40

 0

 2

 4

 0

 5

10

15

 0

10

20

30

40

0e+00

1e−09

2e−09

0.0e+00

5.0e−13

1.0e−12

1.5e−12

2.0e−12

−3.2e−17

 1.4e−16

 3.2e−16

 4.9e−16

 6.6e−16

0e+00

1e−09

2e−09

3e−09

0.0e+00

5.0e−13

1.0e−12

1.5e−12

2.0e−12

−3.0e−17

 1.4e−16

 3.0e−16

 4.7e−16

 6.4e−16

Estimate

D
en

si
ty

Figure 1: Histograms of point estimates in simulations for the various methods considered in the simulations.
Vertical dotted and solid lines indicate true causal effect and median estimate, respectively. Clipped estima-
tors achieve much better performance than unclipped estimators, and clipped AIPW’s debiasing property is
also apparent.

in this setting, and both the asymptotic normality and the clipped IPW estimator’s first-order bias are visible

to the naked eye, although the clipped IPW estimator also exhibits visible skew in small samples. I test for

t-statistic normality using a Shapiro-Wilk test. The test rejects normality for both clipped estimates. Still,

the clipped AIPW estimator’s violations are less severe by this criterion.

I find in Figure 3 that the clipped AIPW estimator’s p-values are well-calibrated in sufficiently large

samples. I use Wald confidence intervals to calculate two-sided p-values on the null of the true average

potential outcome. If Wald confidence intervals are well-calibrated, then the simulated p-values on the true

average potential outcome will be exactly uniformly distributed. The unclipped IPW and AIPW estimators

exhibit known poor performance. The clipped IPW estimator exhibits over-rejection even with large samples,

as it provides well-calibrated inference for a first-order-biased estimand. The clipped AIPW estimator also

over-rejects in small samples, but the bias is less severe: with 1,000 observations, clipped IPW rejects the true

null in 12.0% of simulations, while clipped AIPW rejects in 8.8% of simulations. As the sample size increases,
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Figure 2: Histograms of simulation t-statistics for various sample sizes. Vertical solid and dotted lines
indicate mean t-statistic and target mean t-statistic of zero, respectively. Dashed line corresponds to the
calibrated Gaussian density targeted in the Shaprio-Wilk test for normality.

the asymptotic normality of Theorem 1 becomes apparent. With 100,000 observations, clipped IPW rejects

the true null hypothesis in 12.8% of simulations, while clipped AIPW rejects in 5.3% of simulations. The

p-value on exact calibration of the two-sided test statistics for clipped AIPW with 100,000 observations is

0.692. This is a remarkable result: despite the known extreme difficulty of statistical inference in this setting,

5,000 simulated draws are insufficient to detect a meaningful failure of Wald confidence intervals based on

the clipped AIPW estimator.

In moderate samples, clipped AIPW can undercover due to the challenge of outcome regression under

weak overlap. In Appendix A (Figures 8 through 10), I conduct the same experiments, but with the estimated

outcome regression function replaced by the oracle true function. The root-mean-squared error and failures

of normality are comparable, suggesting these non-inferential patterns are driven by propensity estimation

and clipping. However, the two-sided p-values exhibit better performance in small samples, and if anything

slightly under-reject with 100,000 observations. In fact, outcome regression is difficult in small samples.

Figure 4 presents an example with 1,000 observations. It is rare to have treated observations with small
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Figure 3: Histograms of simulation p-values on null hypothesis of true APO for various sample sizes. Dotted
lines correspond to the target Uniform(0, 1) density. P-values in labels correspond to Kolmogorov-Smirnov
tests for the Uniform(0, 1) distribution.

values of e(X). As a result, when such observations are treated, a small number of observations can receive

substantial leverage in outcome regression, and the predictions of E[Y | X = 0, D = 1] can be driven by a

small number of outcome residuals. An important avenue for future work is exploring better methods for

outcome regression estimation strategies in small samples under weak overlap.

In Appendix A (Figures 11 through 13), I show that these conclusions largely carry through if clipping

were replaced by trimming. The notable differences are that trimmed AIPW exhibits slightly better esti-

mation performance in small samples, while if anything trimmed IPW is slightly worse; trimmed t-statistics

exhibit less severe violations of normality; and p-values based on trimmed propensities exhibit more severe

undercoverage for both IPW and AIPW.

4.2 Application to Right Heart Catheterization

I apply the clipped AIPW estimator to study the effect of right-heart cathterization (RHC) on survival.

This dataset was first analyzed by Connors et al. (1996), and is a common benchmark in the weak overlap
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Figure 4: Simulated treated observations for one simulation of 1,000 observations. It is rare to see treated
observations with small X, which corresponds to small values of e(X) = X1/(γ0−1). As a result, such
observations can have high leverage when predicting E[Y | X = 0, D = 1], and can yield to important errors
between the true (dashed) and predicted (solid) regression lines.

literature (Crump et al., 2009; Armstrong and Kolesár, 2017).

I analyze a version of the dataset from Armstrong and Kolesár (2017). The dataset is comprised of

5,735 adult patients, and the treatment D corresponds to receiving RHC within 24 hours of admission.

The target causal effect is the average treatment effect of RHC on 30-day survival. The data includes 52

covariates X (72 covariates if counting factor levels separately). I estimate the nuisance functions e(X) and

µ(X) using five-fold cross-fitting. I estimate nuisance functions with logistic regression to align with Crump

et al. (2009)’s empirical application. I estimate standard errors by bootstrapping the procedure. I keep fold

assignment fixed in bootstraps to minimize the risk of over-fitting.

Crump et al. propose a weak overlap rule of thumb that estimates the treatment effect for the sub-

population with propensity scores between 10% and 90%. This rule-of-thumb trimming rule is chosen to

approximately minimize asymptotic variance. This strategy ensures asymptotic normality, but changes the

target estimand even asymptotically. By comparison, the clipped and trimmed AIPW estimators I analyze

have thresholds bn that tend to zero asymptotically. As a result, the estimators proposed here are able to

target full population average treatment effect, potentially at the cost of increased variance even asymptot-

ically. I compare these procedures, as well as other potential fixed trimming rules, using the same nuisance

estimates.

I present the distribution of estimated propensity scores for treated and control units in Figure 5. The
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Figure 5: Histogram of estimated propensity scores for treated (left) and control (right) observations in right
heart catheterization data. The plot is designed to parallel Figure 1 in Crump et al. (2009). Slight differences
reflect the use of cross-fitting.

figure is an analog of Crump et al. (2009)’s Figure 1. There is a meaningful density of units with estimated

propensities near zero, suggesting weak overlap. This pattern is similar to the findings of Crump et al.,

although there are slight differences, presumably due to my use of cross-fitting.

0.00

0.01

0.02

0.000 0.025 0.050 0.075 0.100
Potential b_n

R
ul

e−
of

−
T

hu
m

b 
D

iff
er

en
ce

Treated

Control

Figure 6: The value of fn(b) + n−1/2 from Equation (4), where the equal-rates rule of thumb chooses bn to
set fn(b) equal to zero. n−1/2 is indicated by horizontal dashed line. The more favorable distribution of
estimated treatment propensities allows for a more aggressive clipping threshold.

I compare AIPW estimators for various trimmed subsamples to the clipped AIPW estimator. I choose

the clipping threshold bn through the equal-rates Equation (4) because I estimate both nuisance functions

parametrically. This strategy chooses treated and control clipping thresholds to set a data-dependent function

equal to n−1/2, so I plot the data-dependent functions in Figure 6. The estimated lower clipping threshold
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is 0.068 and affects 10.5% of observations. The Crump et al. 10% rule of thumb would exclude 16.3% of

observations below. The estimated upper clipping threshold is 0.09 below one: there are few observations

with large estimated propensities, so the rule of thumb concludes there is no need to trim observations with

large estimated propensities. This upper threshold affects 1.4% of observations, comparable to the 1.8% of

observations excluded above by the 10% rule of thumb.
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Figure 7: Estimated effects (solid line) and 95% confidence interval (shaded region) for AIPW applied to
various trimmed subsamples. Estimate and confidence for clipped AIPW is represented by the dashed and
dotted horizontal lines, respectively. Clipped AIPW produces similar estimates and standard errors as the
clipping procedure while targeting a more interpretable estimand. A threshold of zero is omitted from the
graph because the resulting confidence interval of [-568.8, 581.3] would make the graph difficult to read.

I present estimated effects and confidence intervals for various potential fixed trimming rules in Figure 7.

The 10% trimming rule yields an estimated reduction in survival rates of -5.79 percentage points among the

trimmed sample, with an estimated 95% Wald confidence interval of [-9.14, -2.43]. Other trimming rules

would yield larger confidence intervals, as expected because the 10% rule is chosen to roughly minimize

asymptotic variance over target populations.

I compare the trimmed-sample AIPW estimates to a clipped AIPW estimator that targets the full

population. The estimated harm increases to -6.07 percentage points, a change of 0.168 standard errors

under the 10% rule of thumb estimator. The clipped AIPW confidence interval of [-9.6, -2.55], has a 5.14%

larger width than the 10% trimmed sample interval. The clipped AIPW point estimates are similar to the

point estimates under a 1% or 5% trimming rule, but the associated confidence interval is slightly narrower.

Part of the clipped AIPW standard error is driven by using clipping in the modified population with ê(X)

below bn: if I used a trimmed, rather than clipped, AIPW estimator, the estimated effect would move by

0.256 standard errors, and the standard error would only increase by 0.54%. However, the simulation results

of Section 4.1 suggest the trimmed AIPW estimator may slightly under-cover.
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Taken together, these results illustrate that under weak overlap, targeting the causal effect within the full

population need not come at a large precision cost. In this application, clipped AIPW with a rule-of-thumb

clipping rate yields similar estimates to estimators that target a fixed trimmed sample, while targeting a

population that is often more relevant than the fixed-trimming sample and adding only a small precision

cost. These results suggest that clipped AIPW is a viable alternative to fixed trimming. At a minimum,

practitioners can easily report results under both strategies. When, as here, the fixed-trimming and sequence-

of-clipping responses to weak overlap yield similar causal conclusions, then there is strong evidence that these

conclusions are not driven by the treatment of observations with small estimated propensities.

5 Conclusion

This work shows that standard Wald confidence intervals for clipped AIPW can achieve target coverage

for standard causal effects under plausible conditions. I provide sufficient conditions on nuisance regression

rates for clipped (or trimmed) AIPW to be uniformly valid over distributions with even very weak overlap.

I use these theoretical results to derive new rules of thumb for choosing a threshold. I find that Wald

confidence intervals perform very well in simulations, and can achieve comparable precision to a fixed 10%

trimming rule in practice.

This work can be applied in many interesting directions. This work exploits Neyman orthogonality to

achieve standard statistical inference in the presence of a small region of irregular identification. Semenova

(2024) applies similar techniques to intersection bounds, where at a high level a margin condition plays

the role of the minimal overlap bound here. Perhaps similar ideas could apply to other forms of irregular

identification. Sasaki and Ura (2022) and Ma et al. (2023) propose estimators for ratio estimands beyond

IPW; the arguments here are likely to extend to their more general framework. Issues of weak overlap

hold for inverse propensity and other importance sampling estimators in settings like difference-in-difference

estimation (Callaway and Sant’Anna, 2021) or statistical inference for parameters that are identified at

infinity (Andrews and Schafgans, 1998; Khan and Nekipelov, 2024); the results and rules of thumb here can

likely be adapted to those settings.
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Gäıffas, S. (2005). Convergence rates for pointwise curve estimation with a degenerate design. Mathematical

Methods of Statistics, 14(1).
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A Other Simulation Evidence

In this section, I presented simulated evidence for trimmed estimators.
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Figure 8: Histograms of point estimates in simulations for the various methods considered in the simulations,
but using the oracle µ regression function instead of the estimated µ̂ regression function.
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Figure 9: Histograms of simulation t-statistics for various sample sizes, but using the oracle µ regression
function instead of the estimated µ̂ regression function.
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Figure 10: Histograms of simulation p-values on null hypothesis of true APO for various sample sizes, but
using the oracle µ regression function instead of the estimated µ̂ regression function.
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Figure 11: Histograms of point estimates in simulations for the various methods considered in the simulations,
but with trimming instead of clipping.
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Figure 12: Histograms of simulation t-statistics for various sample sizes, but with trimming instead of
clipping.
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Figure 13: Histograms of simulation p-values on null hypothesis of true APO for various sample sizes, but
with trimming instead of clipping.
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B Proofs

The plan of the proofs is as follows. Appendix B.1 presents key technical claims in the proof of Theorem 1:

Assumption 3’ presents the technical rate requirements in terms of AIPW quantities; Proposition 4 shows

that the oracle clipped AIPW estimator’s t-statistics are well-calibrated, and then the interior Theorem 1’

shows that the estimated t-statistics are well-calibrated. These claims rely on several technical claims,

which are organized into sections showing asymptotic properties of oracle clipped AIPW (Appendix B.2),

consistency of estimated clipped AIPW (Appendix B.3), and asymptotic properties of estimated clipped

AIPW (Appendix B.4). Finally, Appendix B.5, Appendix B.6, and Appendix B.7 prove claims about the

rate interpretations, proposed rules of thumb, and practical limitations, respectively.

Notation. In these proofs, I use P(n) to refer to an arbitrary sequence of distributions for the purposes

of computing suprema; for such sequences, I use ψn = ψ(P(n)) to denote the sequence of average potential

outcomes. I use Pn [cn] to refer to the average of cn over n draws from P (sometimes abusing notation

and including nuisance functions in cn), and I use P [cn] to refer to the expectation of cn over P . This

can occasionally lead to unfortunate notation like P(n)n (En) for a sequence of event probabilities under a

sequence of distributions. I write limx→z+ f(x) and limx→z− for the right- and left-hand limits of f at z. I

write cn = oP(n)(1) if for all δ > 0, P(n)(|cn|/dn > δ) → 0, and if no P(n) is defined, I use cn = oP(n)(dn)

to mean that for any sequence of P(n) ⊂ P, cn = oP(n)(dn). I write cn = OP(n)(1) if for all ϵ > 0, there

exists a δ > 0 such that P(n)(|cn|/dn > δ) < ϵ. If there is a sequence of distributions to be considered,

then I use o(dn) and O(dn) to implicitly refer to oP(n)(dn) and OP(n)(dn). I write that cn
P(n)
⇝ N(0, 1) if

supt∈R |P(n)(cn ≤ t)− Φ(t)| → 0, where Φ is the standard normal cumulative distribution function; I write

that cn →P(n) c if cn − c = oP(n)(1); and I write that cn
P−→ c if for all sequences of P(n) ∈ P, cn →P(n) c. I

write cn = Θ(dn) if there exists a k1, k2 > 0 such that P(n) [cn ∈ [k1dn, k2dn]] → 1.

B.1 Key Technical Claims

I make use of the following assumptions.

Assumption 3’. Assumption 2 holds, with the following rates on the regression error rµ,n and the propensity

error re,n for any sequence of P(n) ∈ P:

(a) Consistency. rµ,n, re,n → 0.

(b) Product of errors. rµ,nre,n

√
EP(n)

[
D

max{e(X),bn}2

]
≪ n−1/2.

(c) Regression error near singularities. rµ,n
P(n)(e(X)≤bn)√
EP(n)

[
D

max{e,bn}2

] ≪ n−1/2.

(d) Asymptotically known thresholding. re,n ≪ bn.
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These conditions adapt to the distributions in the sequence P(n), and are weaker than the more inter-

pretable conditions in the main text.

I will proceed under these rate assumptions, which are implied by the assumptions above.

Corollary 4 (Sufficiency of Assumption 3’). Suppose Assumptions 3, 4, and Assumption 4(i) hold and let

ρ > 0 be given. Then for any sequence of P(n) ∈ P, Assumption 3’ holds.

I will show that the feasible clipped estimator ψ̂AIPWclip (bn) is first-order equivalent to the oracle clipped

estimator ψ̃AIPW(Orcl) (bn). The oracle clipped AIPW estimator is asymptotically normal by the trimmed IPW

arguments in Ma and Wang (2020). By construction, the oracle clipped AIPW estimator is finite-sample

unbiased. The following asymptotic normality follows as a result.

Proposition 4 (Oracle asymptotic normality). Suppose bn satisfies n−1/2 ≪ bn ≪ 1. Then the oracle

clipped AIPW estimator has uniform convergence to a normal distribution in the sense that

lim sup
n→∞

sup
P∈P

sup
t∈R

∣∣∣∣∣P
(
ψ̃AIPW(Orcl) (bn)− ψ(P )

σn
≤ t

)
− Φ(t)

∣∣∣∣∣ = 0.

Proposition 4 will be an extension of the following claim. In addition to this modified theorem, Theorem 1

replaces the oracle standard deviation σn with the estimated standard deviation σ̂n when constructing t-

statistics.

Theorem 1’ ((Slow) Asymptotic Normality). Suppose the conditions of Theorem 1 hold, and P(n) is a

sequence of distributions P ∈ P. Then σ−1
n

(
ψ̂AIPWclip (bn)− ψn

) P(n)
⇝ N(0, 1), where σn is the oracle standard

deviation defined in Proposition 4.

B.2 Oracle Normality

Lemma 2. Assume bn → 0. Then for all large n, the following inequalities hold throughout P:

(i) P (e(X) > πmin/2) ≥ πmin/2

(ii) E[e(X)/{e(X) ∨ bn}2] ≥ πmin/2

(iii) E[|ϕn − EP(n)[ϕn]|q] ≤ (4M)qE[e(X)/{e(X) ∨ bn}2]/bq−2
n

(iv) E[|ϕn|q] ≤ (8M)qE[e(X)/{e(X) ∨ bn}2]/bq−2
n

Proof of Lemma 2. I take these proofs one at a time.

(i) Start from the following inequalities:

πmin ≤ E[e(X)]
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= E[e(X)1{e(X) ≤ πmin/2}] + E[e(X)1{e(X) > πmin/2}]

≤ (πmin/2)[1− P (e(X) > πmin/2)] + P (e(X) > πmin/2)

< πmin/2 + P (e(X) > πmin/2)

Subtracting πmin/2 from the far left- and right-hand sides of this inequality gives the desired conclusion.

(ii) If bn ≤ πmin/2 (which happens for all large n), then:

E[e(X)/{e(X) ∨ bn}2] ≥ E[1/e(X)1{e(X) ≥ bn}] ≥ P (e(X) ≥ bn) ≥ P (e(X) ≥ πmin/2) ≥ πmin/2.

(iii) By Jensen’s inequality:

E[|ϕn − EP(n)[ϕn]|q] ≤ 2q−1(E[|µ(X)− EP(n)[µ(x)]|q] + E[|Y − µ(X)|qD/{e(X) ∨ bn}q])

≤ 2q−1(2qE[|µ(X)|q] + E[E[|Y − µ(X)|q | X,D = 1]e(X)/{e(X) ∨ bn}q])

≤ 2q−1(2qMq + 2qE[E[|Y |q | X,D = 1]e(X)/{e(X) ∨ bn}q])

≤ 2q−1(2qMq + 2qMqE[e(X)/{e(X) ∨ bn}2 × 1/{e(X) ∨ bn}q−2])

≤ 2q−1(2qMq + 2qMqE[e(X)/{e(X) ∨ bn}2]/bq−2
n )

Since E[e(X)/{e(X) ∨ bn}2]/bq−2
n ≥ πmin/2b

q−2
n → ∞ by Item (ii), I may further bound the above

quantity by 22qMqE[e(X)/{e(X) ∨ b2n}]/bq−2
n once n is large enough.

(iv) By Jensen’s inequality:

E[|ϕn|q] = E[|ϕn − EP(n)[ϕn] + EP(n)[ϕn]|q]

≤ 2q−1(E[|ϕn − EP(n)[ϕn]|q] + |EP(n)[ϕn]|q])

≤ 2q−1(4M)qE[e(X)/{e(X) ∨ bn}2]/bq−2
n + 2q−1|EP(n)[µ(x)]|q (Item (iii))

≤ 2q−1(4M)qE[e(X)/{e(X) ∨ bn}2/bq−2
n ] + 2q−1E[E[|Y |q | X,D = 1]] (Jensen)

≤ 2q−1(4M)qE[e(X)/{e(X) ∨ bn}2]/bq−2
n + 2q−1Mq

As before, since E[e(X)/{e(X) ∨ bn}2]/bq−2
n → ∞, the first term in the upper bound is eventually

larger than the second and I may bound the whole expression by (8M)qE[e(X)/{e(X) ∨ bn}2]/bq−2
n

once n is large enough.
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Lemma 3. Let c(γ) = γ−1
γ C−1/(γ−1) > 0. Then for any P ∈ P, I have:

EP [e(X)1{e(X) ≤ bn}] ≥ c(γ)P (e(X) ≤ bn)
γ/(γ−1). (5)

This lower bound is attained when P (e(X) ≤ t) = tγ−1.

Proof of Lemma 3. Let p = P (e(X) ≤ bn). If p = 0, then the bound holds trivially so I will assume

throughout that p > 0. Then I may write:

EP [e(X)1{e(X) ≤ bn}] =
∫ ∞

0

P (e(X)1{e(X) ≤ bn} > t)dt

=

∫ bn

0

P (t < e(X) ≤ bn)dt

=

∫ bn

0

p− P (e(X) ≤ t)dt

≥ bnp−
∫ bn

0

min{p, Ctγ−1}dt

= bnp− (C/γ)(p/C)γ/(γ−1) − bnp+ p(p/C)1/(γ−1)

= c(γ)pγ/(γ−1).

This proves the lower bound. When P (e(X) ≤ t) = tγ−1, a direct calculation gives EP [e(X)1{e(X) ≤ bn}] =

[(γ − 1)/γ]bγn = [(γ − 1)/γ]P (e(X) ≤ bn)
γ/(γ−1). Therefore, the lower bound is also sharp.

Lemma 4. For any P ∈ P,

V arP (ϕ(Z | bn, η)) ≥ σ2
minEP

[
e(X)/max{e(X), bn}2

]
≥ σ2

min[c(γ)P (e(X) ≤ bn)
γ/(γ−1)/b2n + πmin/2]

≥ σ2
minπmin/2 > 0.

Proof of Lemma 4. For the first line:

VarP (ϕn) = E[Var(ϕn | X)] + Var(E[ϕn | X])

= E[Var(ϕn | X)]

= E[E[|Y − µ(X)|2 | X,D = 1]e(X)/{e(X) ∨ bn}2]

≥ σ2
minE[e(X)/{e(X) ∨ bn}2].

Since Definition 1 implies e(X) > 0, VarP (ϕn) > 0.
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For the second line, I assume n is so large that bn ≤ πmin/2. Then:

E[e(X)/max{e(X), bn}2] = E[e(X)/b2n1{e(X) ≤ bn}] + E[1/e(X)1{e(X) > bn}]

≥ E[e(X)/b2n1{e(X) ≤ bn}] + P (e(X) > bn)

≥ E[e(X)/b2n1{e(X) ≤ bn}] + P (e(X) > πmin)

≥ E[e(X)/b2n1{e(X) ≤ bn}] + πmin/2 (Lemma 2.(i))

≥ c(γ)(1/bn)
2P (e(X) ≤ bn)

γ/(γ−1) + πmin/2. (Lemma 3)

The final line is immediate.

Lemma 5. 1√
V ar(ϕ(Z|bn,η))

≤ 1√
σ2
minEP(n)[D/max{e(X),bn}2]

.

Proof of Lemma 5. By Lemma 4, I have:

σ−1
n ≤ n1/2/

√
σ2
minEP(n) [D/max{e(X), bn}2],

where σ−1
n = n−1/2/

√
V arP(n)(ϕn).

Lemma 6. Define ϕ̃(Z | b, P ) ≡ ϕ(Z | b, η(P))− EP [µ(X)] for P ∈ P. Further define ρ(b, P ) ≡ EP [|ϕ̃(Z |

b, P )|3] and σ(b, P ) ≡
√
V arP (ϕ̃(Z | b, P )).

Then the following hold:

1. EP [ϕ̃(Z | b, P )] = 0

2. σ(b, P ) > 0

3. ρ(b, P ) <∞ (though it may be arbitrarily large)

4. If bn be a sequence of positive real numbers such that n−1/2 ≪ bn and P(n) be a sequence of distributions

in P, then ρ(bn,P(n))
σ(bn,P(n))3

√
n
= o(1).

Proof of Lemma 6. EP [ϕ̃(Z | bn, P )] = 0 is immediate.

V arP [ϕ̃(Z | b, P )] > 0 follows by Lemma 4.

For the third moment being finite:

ρ(b, P ) = EP [|ϕ̃(Z | b, P )|3] ≤ 8EP
[
|µ(X)− EP [µ(X)]|3 + b−3|Y − µ(X)|3

]
≤ O(Mq) + 16b−3EP

[
|Y |3

]
.
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This is finite (and O(b−3)O(Mq)) by assumption.

Finally, I have the claim for sequences. Recall that by Lemmas 4 and 2, 1
σ(bn,P(n))3

√
n

= o(1) and

EP(n)

[
D

max{e(X),bn}2

]
≥ σ2

min/2. As a result:

ρ(bn,P(n))
σ(bn,P(n))3

√
n
≤ 8

EP(n)

[
D|Y−µ(X)|3

max{e(X),bn}3 + |µ(X)− EP(n)[µ(X)]|3
]

σ(bn,P(n))3
√
n

≤ O(Mq)
EP(n)

[
D

max{e(X),bn}2

]
bnσ(bn,P(n))3

√
n

+
O(Mq)

σ(bn,P(n))3
√
n

= O(Mq, σ2
min)EP(n)

[
D

max{e(X), bn}2

]−1/2

(b2nn)
−1/2 + o(1)

= o (1) .

Proof of Proposition 4. Let P(n) be a sequence of distributions in P. By Lemma 6 and the Berry Esseen

Theorem, the difference between the CDF of oracle clipped AIPW t-statistic
ψ̃AIPW

clip −ψn

σn
=

∑
ϕ̃(Z|bn,P(n))√

V ar(ϕ(Z|bn,η))
√
n

and the standard normal CDF Φ is uniformly bounded above by 3ρ(bn,P(n))
σ(bn,P(n))3

√
n
. By Lemma 6.4, this difference

tends to zero. Therefore:

lim sup
n→∞

sup
P∈P

sup
t∈R

∣∣∣∣∣P
(
ψ̃AIPW(Orcl) (bn)− ψ(P )

σn
≤ t

)
− Φ(t)

∣∣∣∣∣ = lim sup
n→∞

o(1) = 0.

B.3 Consistency

Lemma 7. Under cross-fitting, I have the bias bound:

∣∣∣E [ψ̂AIPWclip (bn)− ψn

]
| µ̂, ê

∣∣∣ ≤ rµ,nP(n) (e(X) ≤ bn + re,n) + rµ,nre,nE
[
1{e > bn + re,n}

e− re,n

]
.

Proof. Fix one fold and take µ̂(−k) and ê(−k) as given. I write the bias relative to oracle clipped AIPW as:

E
[
(µ̂− µ)

(
1− D

max{ê, bn}

)
+ (µ− Y )

(
D

max{e, bn}
− D

max{ê, bn}

)]
= E

[
(µ̂− µ)

(
1− D

max{ê, bn}

)]
,

with the equality following by cross-fitting.
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For p = 1, 2, let cn,p solve:

|max{cn,p, bn}p −max{cn,p − re,n, bn}p|
max{cn,p − re,n, bn}p

=
|max{cn,p, bn}p −max{cn,p + re,n, bn}p|

max{cn,p + re,n, bn}p
. (6)

cn,p is useful because it is the changeover point between whether the worst-case ê is above or below e. Note

that cn,p ∈ (bn, bn + re,n) by the intermediate value theorem: when cn,p = bn, the left-hand side is zero,

while when cn,p = bn + re,n, the left hand side has the smaller denominator but equal numerator.

cn,1 is useful, because when e(X) = cn,1, ê(X) = e(X) − re,n and ê(X) = e(X) + re,n produce equal

levels of observation-wise bias from clipped inverse propensities relative to unity.

Then I have the bound:

∣∣∣E [ψ̂AIPWclip (bn)− ψn

]∣∣∣ ≤ ∣∣∣∣E [(µ̂− µ)
max{ê, bn} − e

max{ê, bn}
1{e ≤ bn − re,n}

]
| ê, µ̂

∣∣∣∣
+

∣∣∣∣E [(µ̂− µ)
max{ê, bn} − e

max{ê, bn}
1{e ∈ (bn − re,n, cn,1]}

]
| ê, µ̂

∣∣∣∣
+

∣∣∣∣E [(µ̂− µ)
max{ê, bn} − e

max{ê, bn}
1{e ∈ (cn,1, bn + re,n]}

]
| ê, µ̂

∣∣∣∣
+

∣∣∣∣E [(µ̂− µ)
max{ê, bn} − e

max{ê, bn}
1{e > bn + re,n}

]
| ê, µ̂

∣∣∣∣
≤
∣∣∣∣E [rµ,n bn − e

bn
1{e ≤ bn − re,n}

]
| ê, µ̂

∣∣∣∣
+

∣∣∣∣E [rµ,n re,n
e+ re,n

1{e ∈ (bn − re,n, cn,1]}
]
| ê, µ̂

∣∣∣∣
+

∣∣∣∣E [rµ,n e− bn
bn

1{e ∈ (cn,1, bn + re,n]}
]
| ê, µ̂

∣∣∣∣
+

∣∣∣∣E [(µ̂− µ)
re,n

e− re,n
1{e > bn + re,n}

]
| ê, µ̂

∣∣∣∣
≤ rµ,nP(n)(e(X) ≤ bn + re,n) + rµ,nre,nE

[
1

e− re,n
1{e > bn + re,n}

]
,

where the final line follows because rµ,n is always multiplied by a term that is bounded above by one for all

e(X) ≤ bn + re,n.

Proof of Proposition 1. Let P(n) be a sequence of distributions in P, and fix some k ∈ 1, ...,K.

Write ψ̂AIPWclip (bn) =
1
K

∑
k ψ̂

AIPW
clip,k (bn), where ψ̂

AIPW
clip,k (bn) is the fold−k APO estimate. I will show that

ψ̂AIPWclip,k (bn)− ψn = oP(n)(1).

First I show that E
[
ψ̂AIPWclip,k (bn)− ψn | µ̂(−k), ê(−k)

]
= oP(n)(1). This holds by the assumptions of Propo-

sition 1 applied to the bias bound from Lemma 7:

∣∣∣E [ψ̂AIPWclip,k (bn)− ψn | µ̂(−k), ê(−k)
]∣∣∣ ≤ Crµ,n(bn + re,n)

γ0−1 + rµ,nre,nE

[
1{e(X) > bn + re,n

e(X)− re,n

]
.
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If rµ,n
re,n+bn
bn

→P(n) 0, then this term is oP(n)(1) because rµ,n and re,n + bn are bounded above by Assump-

tion 2, and at least one of the two terms must tend to zero because bn →P(n) 0 and rµ,n
re,n+bn
bn

→P(n) 0.

If re,nb
min{γ0−2,0}
n →P(n) 0, then there is a δn → ∞ such that re,nb

min{γ0−2,0}
n δn → 0. For the first term,

rµ,n(bn+re,n)
γ0−1 →P(n) 0 because rµ,n is bounded above and γ0 > 1. For the final term, suppose that γ0 < 2,

so that the claim is not immediate. If re,n ≤ bnδ
1/(1−γ0)
n , then re,n

[
1{e(X)>bn+re,n}

e(X)−re,n

]
≤ re,n/bn ≤ 1/δn → 0.

If re,n ≥ bnδ
1/(1−γ0)
n :

EP (n)

[
1{e(X) > bn + re,n}

e(X)− re,n

]
= C(bn + re,n)

γ0−1b−1
n + C(γ0 − 1)

∫ C−1/(γ0−1)

bn+re,n

(t− re,n)
−1tγ0−2dt

≤ C(bn + re,n)
γ0−1b−1

n + C(γ0 − 1)

∫ C−1/(γ0−1)

bn+re,n

(t− re,n)
γ0−3dt

≤ C(bn + re,n)
γ0−1b−1

n + C(γ0 − 1)

∫ 1

bn

xγ0−3dx

= C(bn + re,n)
γ0−1b−1

n +
C(γ0 − 1)

2− γ0

(
bγ0−2
n − 1

)
≤
(
2γ0−1C +

γ0 − 1

2− γ0
C

)
bγ0−2
n + 2Crγ0−1

e,n b−1
n

≤ O(1)bγ0−2
n δn.

Note that this bound may be lax. Whether the propensity rate requirement could be weakened is an open

question for future work. Regardless, in this remaining case under the propensity rate requirement (i),

rµ,nre,nb
γ0−2
n δn →P(n) 0 by construction of δn, so that the final term of the bias bound tends to zero.

Next, I show that V (ψ̂AIPWclip,k (bn) | µ̂(−k), ê(−k)) = oP(n)(1). I have:

V (ψ̂AIPWclip,k (bn) | µ̂(−k), ê(−k)) ≤ n−1E

[(
µ̂+

D(Y − µ̂)

max{ê, bn}

)2

| µ̂, ê

]

≤ 8n−1b−2
n (Lemma 2.(iv))

= o(1).

Therefore E
[(
ψ̂AIPWclip,k (bn)− ψn

)2
| µ̂(−k), ê(−k)

]
= oP(n)(1). Therefore, for all ϵ > 0, every δ > 0, and

every sequence of P(n), there is an n large enough such that P(n)
((

ψ̂AIPWclip,k (bn)− ψn

)2
> ϵ2

)
≤ δ. Thus,

consistency holds.

Proof of Proposition 2. Define σ2
max = supP∈P supX,D V ar(Y | X,D). By the presence of q > 2 moments,

σ2
max is finite.

By Lemma 4, EP(n)

[
Dσ2

min

max{e(X),bn}2

]
↛ 0.
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By iid sampling and the oracle AIPW conditional mean being equal to µ(X), I obtain:

V arP(n)

(
ψ̃AIPW(Orcl) (bn)

)
− n−1V arP(n) (µ(X)) = EP(n)

[
V arP(n)

(
ψ̃AIPW(Orcl) (bn) | {X}

)]
= n−1EP(n)

[
V arP(n)

(
D(Y − µ(X))

max{e(X), bn}
| X
)]

= n−1EP(n)

[
e(X)V arP(n)

(
(Y − µ(X))

max{e(X), bn}
| X,D = 1

)]
= n−1EP(n)

[
e(X)

V ar(Y | X,D = 1)

max{e(X), bn}2

]
= Θ

(
n−1EP(n)

[
D

max{e(X), bn}2

])
.

In addition, n−1V arP(n) (µ(X)) ≤ n−1M = O
(
n−1EP(n)

[
D

max{e(X),bn}2

])
, proving the claim.

Proof of Corollary 1. Let n be large enough that bn ≤ 1 and bγ0−2
n > 2. Recall the definition of σ2

max from

the proof of Proposition 2.

For the upper bound, let P be arbitrary:

σ2
n − n−1V ar(µ) = n−1V arP

(
µ(X) +

D(Y − µ(X))

max{e(X), bn}

)
− n−1V arP (µ(X))

= n−1EP

[
D(Y − µ(X))2

max{e(X), bn}2

]
≤ n−1EP

[
Dσ2

max

max{e(X), bn}2

]
= σ2

maxEP

[
e(X)

max{e(X), bn}2

]
= n−1σ2

max

∫ ∞

0

P

(
e(X)

max{e(X), bn}2
≥ t

)
dt

= n−1σ2
max

∫ ∞

0

P
(
e(X) ≤ bn, e(X) ≥ tb2n

)
dt

+ n−1σ2
max

∫ ∞

0

P (e(X) > bn, e(X) ≤ 1/t) dt

= n−1σ2
max

∫ b−1
n

0

P
(
e(X) ∈ [tb2n, bn]

)
dt+ n−1σ2

max

∫ b−1
n

0

P (e(X) ∈ [bn, 1/t]) dt

= n−1σ2
max

∫ b−1
n

0

P
(
e(X) ∈ [tb2n, 1/t]

)
dt

≤ n−1σ2
max

∫ b−1
n

0

P (e(X) ≤ 1/t) dt

≤ Cn−1σ2
max

∫ b−1
n

0

t1−γ0dt

=
Cσ2

max

γ0 − 2︸ ︷︷ ︸
C′

n−1bγ0−2
n .
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For the remaining term, n−1V ar(µ) = O(n−1) = o
(
C ′n−1bγ0−2

n

)
.

For the lower bound, define P = {P}, where P is the distribution which draws e(X) from the CDF

P (e(X) ≤ π) = (1−πmin)min{Cπγ0−1, 1}+πmin1{π ≥ 1} and Y | X,D ∼ N (0, σ2
min). This distribution has

valid conditional moments and residual variance by the minimal value of M and the choice of V ar(Y | X <

D). The treated fraction is at least πmin > 0. For all π < C−1/(γ0−1), P (e(X) ≤ π) = (1 − πmin)Cπ
γ0−1 ≤

Cπγ0−1; for all π > C−1/(γ0−1), P (e(X) ≤ π) = (1 − πmin) + πmin1{π = 1}, which must be below Cπγ0−1

for all such π in order for P to be non-empty. Finally, note that:

σ2
n − n−1V arP (µ) = n−1EP

[
D(Y − µ(X))2

max{e, bn}2

]

= n−1σ2
min


∫ bn
0

t
b2n
(1− πmin)(γ0 − 1)Ctγ0−2dt

+
∫ 1

bn
1
t (1− πmin)(γ0 − 1)Ctγ0−2dt

+ πmin



= n−1σ2
min


b−2
n (1− πmin)(γ0 − 1)C

∫ bn
0
tγ0−1dt

+ (1− πmin)(γ0 − 1)C
∫ 1

bn
tγ0−3dt

+ πmin


= n−1σ2

min

 bγ0−2
n (1− πmin)C

(
γ0−1
γ0

+ γ0−1
2−γ0

)
+ πmin − (1− πmin)C

γ0−1
2−γ0



≥ σ2
minC(1− πmin)

(
γ0 − 1

γ0
+

γ0 − 1

2(2− γ0)

)
︸ ︷︷ ︸

C′′

n−1bγ0−2
n .

Note also that C ′′ > 0. Thus, C ′′n−1bγ0−2
n ≤ supP∈P σ2

n − VarP (µ(X)) ≤ C ′n−1bγ0−2
n . Analogously to

before, n−1V ar(µ) = o
(
C ′′n−1bγ0−2

n

)
, completing the proof.

B.4 Asymptotic Normality and Rates

Lemma 8. Suppose the conditions of Proposition 4 hold and let P(n) be a sequence of distributions in P.

Then for all α > 0, EP(n)

[
D

max{e(X),bn}2

]
= O

(
1 + nαbγ0−2

n

)
.

Proof of Lemma 8. Let α > 0 be given and let m be an integer above 1/(2α). Let M0 ≡ 1{e(X) ≤ bn}

and for j = 1, ...,m, write Mj ≡ 1{bnn(j−1)α < e(X) ≤ bnn
jα}. For n large enough,

∑m
j=0Mj = 1 with
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probability one, because by assumption, bnn
mα ≫ 1. For all n large enough:

EP(n)

[
D

max{e(X), bn}2

]
=

m∑
j=0

EP(n)

[
Mj

D

max{e(X), bn}2

]

= EP(n)

[
D1{e(X) ≤ bn}
max{e(X), bn}2

]
+

m∑
j=1

EP(n)

[
D1{bnn(j−1)α ≤ e(X) ≤ bnn

jα}
max{e(X), bn}2

]

≤ EP(n)

[
D1{e(X) ≤ bn}

b2n

]
+

m∑
j=1

EP(n)

[
1{bnn(j−1)αe(X) ≤ bnn

jα}
e(X)

]

≤ b−1
n bγ0−1

n +

m∑
j=1

(
bnn

jα
)γ0−1

b−1
n n(1−j)α

= bγ0−2
n

1 +

m∑
j=1

nα(1+j(γ0−2))

 ≤ mbγ0−2
n

(
1 + nα(γ0−1)

)
≤ mnαbγ0−2

n +O(1).

Lemma 9. Suppose the conditions of Proposition 4 hold and P(n) is a sequence of distributions in P. Then

1√
EP(n)

[
D

max{e,bn}2

] = O

 1√
1 + b−2

n P(n)(e(X) ≤ bn)γ0/(γ0−1)

 .

Proof of Lemma 9. For any m ≥ 0, define Pm,n = {P ∈ P | P (e(X) ≤ bn) ≤ m). For each n, define

mn = P(n)(e(X) ≤ bn)
γ0/(γ0−1).

I have:

sup
P∈Pmn,n

EP
[

D

max{e, bn}2

]
= sup
P∈Pmn,n

EP
[
D1{e(X) > bn}
max{e, bn}2

]
+ EP

[
D1{e(X) ≤ bn}

b2n

]
≥ 1 + sup

P∈Pmn,n

b−2
n EP [e(X)1{e(X) ≤ bn}]

≥ 1 + c(γ0) sup
P∈Pmn,n

P (e(X) ≤ bn)
γ0/(γ0−1) (Lemma 3)

= 1 + c(γ0)b
−2
n mγ0/(γ0−1)

n .

Therefore
(
1 + b−2

n P(n)(e(X) ≤ bn)
γ0/(γ0−1)

)2
= O

(
EP(n)

[
D

max{e,bn}2

])
. Taking the square root and

inverting both sides completes the proof.

Proof of Corollary 4. The two changes are the product-of-errors term being stated as 3’(b) and the regression

error near singularities term being stated as 3’(c).

I begin with the product-of-errors term (b). Suppose Assumption 3(b) holds. I wish to show that
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if rµ,nre,n

(
1 + b

(γ0−2)/2
n nα

)
= o(n−1/2), then rµ,nre,n

√
EP(n)

[
D

max{e(X),b2n}

]
= oP(n)(1). Let α > 0 from

Assumption 3 be given. By Lemma 8, for all α > 0,

rµ,nre,n

√
EP(n)

[
D

max{e(X), b2n}

]
= O

(
rµ,nre,n

(
1 + nα/2b(γ0−2)/2

n

))
.

By Assumption 3(b), there is an α > 0 such that this term is o(1), implying Assumption 3’(b) holds.

Next I consider the regression error near the singularities term (c). I first verify (c) for a sequence of

P(n) ∈ P under Assumption 4(i). Let a sequence of P(n) ∈ P and bn be given, and consider an arbitrary

sub-sequence. If there is a further sub-sub-sequence with P(n)(e(X) ≤ bn) = 0, take this sub-sub-sequence

and the claim holds. If not, take a sub-sub-sequence with P(n)(e(X) ≤ bn) > 0. On this sub-sub-sequence,

I have the bound:

EP(n)

[
D

max{e, bn}2

]
≥ EP(n)

[
D1{e ∈ (bn/2, bn]

max{e, bn}2

]
≥ 1

2bn
P(n)(e ∈ (bn/2, bn])

=
1

2bn
(P(n)(e ≤ bn)− P(n)(e ≤ bn/2))

≥ ρ

2bn
P(n)(e ≤ bn). (Assumption 4(i))

Then, applying Assumption 1(e),

rµ,n
P(n)(e(X) ≤ bn)√
EP(n)

[
D

max{e,bn}2

] ≤ rµ,n

(
2bnP(n)(e ≤ bn)

ρ

)1/2

≤

√
2C

ρ
rµ,nb

γ0/2
n = o(n−1/2).

Finally, I verify (c) assuming Assumption 4(ii) holds. I wish to show that if there is a sequence of

P(n) ∈ P and associated constants such that rµ,nb
γ0/2
n = o(n−1/2), then rµ,n

P(n)(e(X)≤bn)√
EP(n)

[
D

max{e,bn}2

] = o(n−1/2).

Under somewhat weak overlap (γ0 > 2), then

rµ,n
P(n)(e(X) ≤ bn)√
EP(n)

[
D

max{e,bn}2

] = O
(
rµ,nb

γ0−1
n

)
= O

(
rµ,nb

2(γ0−1)/γ0+(γ2
0+2−3γ0)/γ0

n

)
= o(n−1/2).

I therefore proceed for γ0 ≤ 2. I will use the bound from Lemma 9:

rµ,n
P(n)(e(X) ≤ bn)√
EP(n)

[
D

max{e,bn}2

] ≤ rµ,n
P(n)(e(X) ≤ bn)√

1 + b−2
n P(n)(e(X) ≤ bn)γ0/(γ0−1)

= “RHS.”
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Consider a sub-sequence of P(n) ∈ P and constants. I will show that there is a further sub-sub-sequence for

which this right-hand side RHS is o(n−1/2). Suppose there is a sub-sub-sequence such that b−2
n P(n)(e(X) ≤

bn)
γ0/(γ0−1) → 0. Then for that sub-sub-sequence, I have:

RHS ≤ rµ,nP(n)(e(X) ≤ bn) = rµ,no
(
b2(γ0−1)/γ0
n

)
= o(n−1/2).

If not, then b2n ≾ P(n)(e(X) ≤ bn)
γ0/(γ0−1) and I have the bound:

RHS ≤ O
(
rµ,nbnP(n)(e(X) ≤ bn)

1−γ0/(2(γ0−1))
)

= O
(
rµ,nbn

(
P(n)(e(X) ≤ bn)

(1/2−1/γ0)∗γ0/(γ0−1)
))

= O

(
rµ,nbn

(
P(n)(e(X) ≤ bn)

γ0/(γ0−1)
)(γ0−2)/(2γ0)

)
= O

(
rµ,nbn

(
b2n
)(γ0−2)/(2γ0)

)
= O

(
rµ,nb

2(γ0−1)/γ0
n

)
= o(n−1/2).

Therefore Assumption 3’(c) holds.

Lemma 10. Suppose the requirements of Theorem 1’ hold. Then by implication, rµ,nP(n)(e(X) ≤ bn) ≪

n−1/2

√
EP(n)

[
D

max{e,bn}2

]
.

Proof of Lemma 10.

rµ,nP(n)(e(X) ≤ bn) =

rµ,n P(n)(e(X) ≤ bn)√
EP(n)

[
D

max{e,bn}2

]

√
EP(n)

[
D

max{e, bn}2

]

≪ n−1/2

√
EP(n)

[
D

max{e, bn}2

]
. (A3’(c))

Lemma 11 (Oracle consistency). If n−1/2 ≪ bn ≪ 1, then |Pn[ϕn]− EP(n)[µ(x)]|
P−→ 0.

Proof of Lemma 11. Let P(n) be a sequence of distributions in P. For any t > 0, I have:

P(n)
(
|P(n)n[ϕn]− EP(n)[µ(x)]| > t

)
≤

E[|ϕn − EP(n)[µ(x)]|2]
nt2

(Chebyshev’s inequality)

≤
E[|ϕn − EP(n)[ϕn]|q]2/q

nt2
(Jensen’s inequality)

≤ [(4M)qE[e(X)/{e(X) ∨ bn}2]]2/q

t2nb
2(q−2)/q
n

(Lemma 2.(iii))
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≤ (4M)2

t2
1

nb2n
.

This upper bound tends to zero and holds simultaneously for all P ∈ P. Hence, |P(n)n[ϕn]−EP(n)[µ(x)]| =

oP(n)(1).

Lemma 12 (Oracle variance consistency). Let σ2
n = n−1(Pn[ϕ

2
n]− Pn[ϕn]

2) be the oracle sample variance.

If n−1/2 ≪ bn ≪ 1, then nσ2
n/VarP(n)(ϕn)

P−→ 1.

Proof of Lemma 12. Let P(n) be a sequence of distributions in P.

First, I argue that for any q > 2:

PP
(∣∣∣∣P(n)n[ϕ2n]− P [ϕ2n]

VarP(n)(ϕn)

∣∣∣∣ > t

)
≤ E{|P(n)n[ϕ2n]− P [ϕ2n]|q/2}

tq/2V arP(n)(ϕn)q/2
(Markov inequality)

≤ 2

tq/2nq/2−1

E{|ϕ2n − P [ϕ2n]|q/2}]
V arP(n)(ϕn)q/2

(von Bahr-Esseen inequality)

≤ 2q/2+1

tq/2nq/2−1

E[|ϕn|q]
V arP(n)(ϕn)q/2

(Jensen’s inequality)

≤ 2q/2+1

tq/2nq/2−1

(8M)qE[e(X)/{e(X) ∨ bn}2]
bq−2
n (VarP(n)(ϕn))q/2

(Lemma 2.(iv))

≤ 2q/2+1

tq/2nq/2−1

(8M)qE[e(X)/{e(X) ∨ bn}2]
bq−2
n σqminE[e(X)/{e(X) ∨ bn}2]q/2

(Lemma 4)

≤ (8M)q2q/2+1

tq/2σqmin(πmin/2)q/2−1

1

nq/2−1bq−2
n

. (Lemma 4)

Since bn ≫ n−1/2, nq/2−1bq−2
n → ∞, so that

∣∣∣P(n)n[ϕ2
n]−P [ϕ2

n]
VarP(n)(ϕn)

∣∣∣ = oP(n)(1).

Then, by the triangle inequality:

|nσ2
n/VarP(n)(ϕn)− 1| ≤

∣∣∣∣P(n)n[ϕn]2 − P [ϕn]
2

VarP(n)(ϕn)

∣∣∣∣+ ∣∣∣∣P(n)n[ϕ2n]− P [ϕ2n]

VarP(n)(ϕn)

∣∣∣∣
≤ |P(n)n[ϕn] + P [ϕn]| × |P(n)n[ϕn]− P [ϕn]|/(σ2

minπmin/2) + oP(n)(1)

(Lemma 4 + above)

≤ (2M + oP(n)(1))oP(n)(1)OP(n)(1) + oP(n)(1) (P [ϕn] ≤M + Lemma 11)

= oP(n)(1),

where σ2
n is the oracle sample variance. Therefore, this upper bound tends to zero uniformly over P.

Lemma 13 (Orthogonalized inverse propensities). Suppose the conditions of Proposition 1 hold, re,n ≪ bn,
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and P(n) is a sequence of distributions in P. Then

EP(n)

[(
D

max{ê, bn}
− D

max{e, bn}

)2
]
= oP(n)

(
EP(n)

[
D

max{e, bn}2

])
.

Proof of Lemma 13. Write (I) = EP(n)

[(
D

max{ê,bn} − D
max{e,bn}

)2]
. Since re,n ≪ bn, let n be large enough

that bn ≥ 2re,n, so that e ≥ bn + re,n implies e − re,n ≥ e/2. Then the squared error has the following

decomposition:

(I) = EP(n)

[
D

max{ê, bn}2
− D

max{e, bn}2

]
− 2EP(n)

[
D

max{e, bn}

(
D

max{ê, bn}
− D

max{e, bn}

)]
= EP(n)

[
D

max{e, bn}2
max{e, bn}2 −max{ê, bn}2

max{ê, bn}2

]
− 2EP(n)

[
D

max{e, bn}2

(
max{e, bn} −max{ê, bn}

max{ê, bn}

)]
= EP(n)

[
D

max{e, bn}2
max{e, bn}2 −max{ê, bn}2

max{ê, bn}2

]
+ 2EP(n)

[
D

max{e, bn}2

(
max{ê, bn} −max{e, bn}

max{ê, bn}

)]
≤ EP(n)

[
D1{ê ≤ e}
max{e, bn}2

max{e, bn}2 −max{ê, bn}2

max{ê, bn}2

]
+ 2EP(n)

[
D

max{e, bn}2

(
re,n

max{e+ re,n, bn}

)]
≤ EP(n)

[
D

max{e, bn}2
max{e, bn}2 −max{e− re,n, bn}2

max{e− re,n, bn}2

]
+ 2EP(n)

[
D

max{e, bn}2

(
re,n
bn

)]
≤ EP(n)

[
D1{e ∈ [bn, bn + re,n)}

max{e, bn}2
(bn + re,n)

2 − b2n
b2n

]
+ EP(n)

[
D1{e ∈ [bn + re,n, 1]}

max{e, bn}2
e2 − (e− re,n)

2

(e− re,n)2

]
+ 2EP(n)

[
D

max{e, bn}2

(
re,n
bn

)]
≤ EP(n)

[
D1{e ∈ [bn, bn + re,n)}

max{e, bn}2
2bnre,n + r2e,n

b2n

]
+ EP(n)

[
D1{e ∈ [bn + re,n, 1]}

max{e, bn}2
2ere,n

(e− re,n)2

]
+ 2EP(n)

[
D

max{e, bn}2

(
re,n
bn

)]
≤ EP(n)

[
D

max{e, bn}2

(
4bnre,n + r2e,n

b2n

)]
+ 4EP(n)

[
D1{e ∈ [bn + re,n, 1]}

max{e, bn}2
2re,n
e

]

≤ EP(n)

[
D

max{e, bn}2

(
12bnre,n + r2e,n

b2n

)]
.

Since re,n = o(bn) by assumption, this upper bound is o
(
EP(n)

[
D

max{e,bn}2

])
.

Lemma 14. For all P ∈ P, EP [D/max{e(X), bn}2] ≥ 1−
(
b2n

γ0−1
c(γ0)

)γ0−1

γ−γ00 .

Proof of Lemma 14.

EP [D/max{e(X), bn}2] = EP [D1{e(X) ≤ bn}/max{e(X), bn}2] + EP [D1{e(X) > bn}/max{e(X), bn}2]

≥ b−2
n EP [D1{e(X) ≤ bn}] + (1− P (e(X) ≤ bn))

≥ b−2
n c(γ0)P (e(X) ≤ bn)

γ0/(γ0−1) + (1− P (e(X) ≤ bn)) (Lemma 3)
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= 1 + P (e(X) ≤ bn)
(
c(γ0)b

−2
n P (e(X) ≤ bn)

1/(γ0−1) − 1
)
.

This term is minimized over P (e(X) ≤ bn) at P (e(X) ≤ bn) =
(

γ0−1

c(γ0)b
−2
n γ0

)γ0−1

, which produces

EP [D/max{e(X), bn}2] = 1− P (e(X) ≤ bn)

γ0
= 1−

(
b2n
γ0 − 1

c(γ0)

)γ0−1

γ−γ00 .

Lemma 15. Suppose the conditions of Lemma 13 hold and rµ,n → 0. Let P(n) be a sequence of distributions

in P. Recall the definitions of ϕn as the oracle clipped influence function and ϕ̂n the estimated influence

function. Then EP(n)[ϕ
2
n] = V arP(n)(ϕn) +O(1) and P(n)n

[
ϕ̂2n − ϕ2n

]
= oP(n)

(
V arP(n)(ϕn)

)
.

Proof of Lemma 15. First, note that:

EP(n)[ϕ
2
n] = V arP(n)(ϕn) + EP(n)[ϕn]

2 = V arP(n)(ϕn) +O(1)2. (Assumption 1(a))

Next, I show that P(n)n
[
ϕ̂2n − ϕ2n

]
= oP(n)

(
EP(n)

[
D/max{e(X), bn}2

])
. I have:

∣∣∣P(n)n [ϕ̂2n − ϕ2n

]∣∣∣ = P(n)n[(ϕ̂n − ϕn)
2] +

∣∣∣P(n)n [2(ϕ̂n − ϕn)ϕn

]∣∣∣
≤ P(n)n[(ϕ̂n − ϕn)

2] + 2

√
P(n)n

[
(ϕ̂n − ϕn)2

]
P(n)n [ϕ2n] (Cauchy-Schwarz)

= P(n)n[(ϕ̂n − ϕn)
2] +

√
P(n)n

[
(ϕ̂n − ϕn)2

]
OP(n)

(
EP(n)[ϕ2n]

)
(Lemma 12)

= EP(n)[(ϕ̂n − ϕn)
2] +

√
EP(n)

[
(ϕ̂n − ϕn)2

]
OP(n)

(
EP(n)[ϕ2n]

)
+ oP(n)

(√
EP(n)[ϕ2n]

)
. (SLLN)

I decompose the nuisance error as:

(ϕ̂n − ϕn)
2 ≤

(
|µ̂− µ|

∣∣∣∣1− D

max{e, bn}

∣∣∣∣+ |Y − µ̂|
∣∣∣∣ D

max{ê, bn}
− D

max{e, bn}

∣∣∣∣)2

(Tri. Ineq.)

≤ 4

(
r2µ,n

(
1 +

D

max{e, bn}2

)
+
(
(Y − µ)2 + oP(n)(rµ,n)

)( D

max{ê, bn}
− D

max{e, bn}

)2
)

≾ r2µ,n
D

max{e, bn}2
+

(
D

max{ê, bn}
− D

max{e, bn}

)2

+ oP(n)(1)

= oP(n)(1)
D

max{e, bn}2
EP(n)

[
D

max{e, bn}2

]
+

(
D

max{ê, bn}
− D

max{e, bn}

)2

+ oP(n)(1)

(rµ,n → 0, Lemma 14)
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EP(n)

[
(ϕ̂n − ϕn)

2
]
= oP(n)

(
EP(n)

[
D

max{e, bn}2

])
+ EP(n)

[(
D

max{ê, bn}
− D

max{e, bn}

)2
]
+ oP(n)(1)

= oP(n)

(
EP(n)

[
D

max{e, bn}2

])
+ oP(n)(1). (Lemma 13)

= oP(n)
(
V arP(n)(ϕn)

)
+ oP(n)(1). (Lemma 4)

As a result:

∣∣∣P(n)n [ϕ̂2n − ϕ2n

]∣∣∣ =√oP(n) (V arP(n)(ϕn))OP(n)
(
EP(n)[ϕ2n]

)
+ oP(n)

(
V arP(n)(ϕn)

)
+ oP(n)

(√
EP(n)[ϕ2n]

)
= oP(n)

(
V arP(n)(ϕn) +

√
V arP(n)(ϕn)

)
= oP(n)

(
V arP(n)(ϕn)

)
. (Lemma 14)

Lemma 16 (Estimated variance consistency). Suppose the assumptions of Proposition 2 and Lemma 15

hold. Let P(n) be a sequence of distributions in P. Then σ̂2
n/σ

2
n

P−→ 1.

Proof of Lemma 16. Recall the definition σ̄2
n = n−1VarP(n)(ϕn).

Let σ2
n = n−1(P(n)n[ϕ2n] − P(n)n[ϕn]2) be the oracle sample variance. By Lemma 12, σ2

n/σ̄
2
n

P−→ 1.

Therefore it suffices to show that (σ̂2
n − σ2

n)/σ̄
2
n =

P(n)n[ϕ̂2
n]−P(n)n[ϕ2

n]−ψ̂
AIPW
clip (bn)

2+ψ̃AIPW
(Orcl) (bn)

2

V arP(n)(ϕn)

P−→ 0.

Note that the assumptions of Proposition 1 hold, because rµ,n
re,n+bn
bn

= rµ,nO(1) = o(1).

Note that by Proposition 2, EP(n)
[
D/max{e(X), bn}2

]
= Θ(nσ̄2

n) = ΘP(n)
(
VarP(n)(ϕn)

)
.

By the triangle inequality:

∣∣∣∣ σ̂2
n − σ2

n

σ̄2
n

∣∣∣∣ ≤
∣∣∣∣∣∣
P(n)n

[
ϕ̂2n − ϕ2n

]
V arP(n)(ϕn)

∣∣∣∣∣∣+
∣∣∣∣∣ ψ̂

AIPW
clip (bn)

2 − ψ̃AIPW(Orcl) (bn)
2

V arP(n)(ϕn)

∣∣∣∣∣
≾
∣∣∣P(n)n [ϕ̂2n − ϕ2n

]∣∣∣O( 1

EP(n) [D/max{e(X), bn}2]

)
(Lemma 5)

+OP(n)

(∣∣∣ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)
∣∣∣) (Lemma 4)

=
∣∣∣P(n)n [ϕ̂2n − ϕ2n

]∣∣∣OP(n)

(
1

EP(n) [D/max{e(X), bn}2]

)
+ oP(n)(1) (Proposition 1)

=
∣∣∣P(n)n [ϕ̂2n − ϕ2n

]∣∣∣OP(n)
(
1/V arP(n)(ϕn)

)
+ oP(n)(1) (Proposition 2)

= oP(n)(V arP(n)(ϕn))OP(n)
(
1/V arP(n)(ϕn)

)
+ oP(n)(1) (Lemma 15)

= oP(n)(1).
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Therefore (σ̂2
n − σ2

n)/σ̄
2
n →P(n) 0. By Lemma 12, σ2

n/σ̄
2
n →P(n) 1. As a result, (σ̂2

n − σ̄2
n)/σ̄

2
n →P(n) 0 and

σ̂2
n/σ̄

2
n

P−→ 1.

Lemma 17. Suppose the conditions of Theorem 1’ hold. Then σ−1
n

(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)
= oP(n)(1).

Proof of Lemma 17. I write k(i) for observation i’s fold and nk for the number of observations in fold k.

Then the oracle and clipped AIPW estimators are:

ψ̃AIPW(Orcl) (bn) =
1

n

n∑
i=1

ϕ(Zi | bn, η) =
∑
k

nk
n

“ψ̃
AIPW,(k)
clip (bn)”︷ ︸︸ ︷

1

nk

∑
i:k(i)=k

ϕ(Zi | bn, η)

ψ̂AIPWclip (bn) =
1

n

n∑
i=1

ϕ(Zi | bn, η̂(−k)) =
∑
k

nk
n

1

nk

∑
i:k(i)=k

ϕ(Zi | bn, η̂(−k))︸ ︷︷ ︸
“ψ̂

AIPW,(k)
clip (bn)”

.

I write r̂k ≡ σ−1
n

(
ψ̃
AIPW,(k)
clip (bn)− ψ̂

AIPW,(k)
clip (bn)

)
. I wish to show that

∑
k
nk

n r̂k = oP(n)(1). I consider an

arbitrary k and quantify the bias and variance of r̂k given the data and nuisance estimates from the other

folds −k.

I write the standard decomposition:

r̂k = σ−1
n Pn

[
(µ̂− µ)

(
1− D

max{ê, bn}

)
+ (µ− Y )

(
D

max{e, bn}
− D

max{ê, bn}

)]
.

By cross-fitting, the bias satisfies E[r̂k | η̂(−k)] = σ−1
n E

[
(µ̂− µ)max{ê,bn}−e

max{ê,bn}

]
. I now bound this term.

∣∣∣E[r̂k | ê(−k), µ̂(−k)]
∣∣∣ ≤ σ−1

n rµ,nP(n)(e(X) ≤ bn + re,n)

+ σ−1
n rµ,nre,nEP(n)

[
1

e− re,n
1{e > bn + re,n}

]
(Lemma 7)

≤ oP(n)(1) + n1/2rµ,nre,n
E
[
D/max{e, bn}2

]√
E [D/max{e, bn}2]

(Lemma 10 + Proposition 2)

= oP(n)(1). (Assumption 3’(b))

Next, I show that V arP(n)

(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)
= oP(n)(σ̄

2
n), where σ̄2

n = n−1VarP(n)(ϕn). .

Consider the estimates in one fold k, with the nuisances from other folds fixed. For the estimates in that

fold:

V arP(n)

(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)
= V ar

(
P(n)nϕ̂− ϕ

)
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= n−1EP(n)

[
(ϕ̂− ϕ)2 − EP(n)E[ϕ̂− ϕ]2

]
= n−1EP(n)

[
(ϕ̂− ϕ)2 − oP(n)(1)

]
(Bias)

= n−1oP(n)
(
V arP(n)(ϕn)

)
+ oP(n)(1) (Lemma 15)

= n−1oP(n)
(
EP(n)[D/max{e(X), bn}2]2

)
+ oP(n)(1) (Lemma 2.(iii))

= oP(n)(σ̄
2
n + 1) (Lemma 5)

= oP(n)

(
EP(n)[D/max{e(X), bn}2]

n
+ 1

)
(Proposition 2)

= oP(n)(σ̄
2
n). (bn ≫ n−1/2)

As a result:

E
[
r̂2k | η̂(−k)

]
= E

[
r̂k | η̂(−k)

]2
+ V ar

(
r̂k | η̂(−k)

)
= oP(n)(1)

r̂k = oP(n)(1)∣∣∣σ−1
n

(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)
= oP(n)(1)

∣∣∣ ≤∑
k

nk
n
|r̂k| =

∑
k

nk
n
oP(n)(1) = oP(n)(1).

Finally, I am ready to prove the central claims of this work.

Proof of Theorem 1’. By Lemma 17, σ−1
n

(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)
= oP(n)(1). Therefore, by Proposi-

tion 4, σ−1
n

(
ψ̂AIPWclip (bn)− ψn

)
= σ−1

n

(
ψ̂AIPWclip (bn)− ψ̃AIPW(Orcl) (bn)

)
+ σ−1

n

(
ψ̃AIPW(Orcl) (bn)− ψn

) P(n)
⇝ N(0, 1).

Proof of Theorem 1. For either claim, let P(n) be a sequence of distributions P in the relevant set. Note

that in either case, the assumptions of Theorem 1’ hold by Corollary 4. Therefore, by Theorem 1’,

sup
t∈R

∣∣∣∣∣P(n)n
(
ψ̂AIPWclip (bn)− ψn

σn
≤ t

)
− Φ(t)

∣∣∣∣∣→ 0,

where P(n)n denotes the empirical average under distribution P(n) and σn is defined in Proposition 4.

Now I expand the empirical t-statistics for any fixed t:

P(n)n

(
ψ̂AIPWclip (bn)− ψn

σ̂n
≤ t

)
= P(n)n

(
ψ̂AIPWclip (bn)− ψn

σn

(
σn
σ̂n

)
≤ t

)

= P(n)n

(
ψ̂AIPWclip (bn)− ψn

σn
≤ t

σ̂n
σn

)

= P(n)n

(
ψ̂AIPWclip (bn)− ψn

σn
− t

σ̂n
σn

≤ 0

)
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→ Φ(t),

with the final result holding by Slutsky’s theorem.

Therefore,

sup
t∈R

∣∣∣∣∣P(n)n
(
ψ̂AIPWclip (bn)− ψn

σ̂n
≤ t

)
− Φ(t)

∣∣∣∣∣→ 0,

by properties of a cumulative distribution function.

Proof of Corollary 2. For simplicity of exposition, I prove the result for the class P under Assumption 4(ii):

lim sup
n→∞

sup
P∈P

∣∣∣P (ψ(P ) ∈ Ĉn)− (1− α)
∣∣∣ = lim sup

n→∞
sup
P∈P

∣∣∣∣∣Pn
(
ψ(P )− ψ̂AIPWclip (bn)

σ̂n
∈
[
zα/2, z1−α/2

])
− (1− α)

∣∣∣∣∣
= lim sup

n→∞
sup
P∈P

∣∣∣∣∣∣∣∣
(
Pn
(
ψ̂AIPW

clip (bn)−ψ(P )

σ̂n
> z1−α/2

)
− α/2

)
−

(
Pn
(
ψ̂AIPW

clip (bn)−ψ(P )

σ̂n
> zα/2

)
− (1− α/2)

)
∣∣∣∣∣∣∣∣

= lim sup
n→∞

sup
P∈P

∣∣∣∣∣∣∣∣
(
Pn
(
ψ̂AIPW

clip (bn)−ψ(P )

σ̂n
< z1−α/2

)
− (1− α/2)

)
−

(
Pn
(
ψ̂AIPW

clip (bn)−ψ(P )

σ̂n
< zα/2

)
− α/2

)
∣∣∣∣∣∣∣∣

≤ lim sup
n→∞

sup
P∈P

∣∣∣∣∣Pn
(
ψ̂AIPWclip (bn)− ψ(P )

σ̂n
< z1−α/2

)
− Φ(z1−α/2)

∣∣∣∣∣
+ lim sup

n→∞
sup
P∈P

∣∣∣∣∣Pn
(
ψ̂AIPWclip (bn)− ψ(P )

σ̂n
< zα/2

)
− Φ(zα/2)

∣∣∣∣∣
= 0. (Theorem 1)

B.5 Rates and Rate Requirements

Proof of Example 1. For simplicity, I proceed assuming lim infn→∞ n1/2re,n > 0.

By Theorem 1, it remains to show that there is a bn → 0 such that:

3(b) For some η′ > 0, rµ,nre,n

(
1 + b

(γ0−2)/2
n nη

′
)
≪ n−1/2.

3(c) rµ,nb
γ0/2
n ≪ n−1/2.

3(d) re,n ≪ bn.
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(i) Without loss of generality, assume η < 1/2 is small enough. Represent the unclipped estimator as

bn = n−η/2, take η′ arbitrary, and let γ0 be arbitrarily large. The remaining claims hold by inspection.

(ii) Because γ0 > 2 and rµ,nre,n ≪ n−1/2, there is some η′′ > 0 such that rµ,n(re,nn
2η′′)γ0/2 ≪ n−1/2 as

well. Choose some bn such that re,n ≪ bn ≪ re,nn
η′′ ≪ re,nn

2η′′ . Choose some η′ such that nη
′ ≪ b

(2−γ0)/2
n .

Then the remaining claims hold by inspection.

Proof of Example 2. Take bn = n−1/4−η/2 and η′ = η. The conditions listed in the proof of Example 1 hold

by inspection.

Proof of Example 3. If γ0 ≥ 2, the claim holds by Example 1 and Example 2.

Now suppose that γ0 < 2. By construction, there is an η′′ ∈
(
0, 2−γ012γ0

)
such that n−2/(3(2−γ0))+4η′′/(2−γ0) ≪

n−1/2. Take this η′′, and take bn = n−1/(3(2−γ0))+4η′′/(2−γ0). By construction, re,n ≪ bn ≪ 1. Take η′ = η

For such a bn:

rµ,nre,nb
(γ0−2)/2
n nη

′
≪ n−2/3n1/6n−2η′′nη

′
≪ n−1/2,

and rµ,nb
γ0/2
n ≪ n

−1
3 +

−γ0
3(2−γ0)

+η
2γ0

2−γ0 = n
−2

3(2−γ0)
+η

2γ0
2−γ0 ≪ n−2/3+η

2γ0
2−γ0 ≪ n−2/3+1/6 = n−1/2. The conditions

listed in the proof of Example 1 hold by inspection.

Proof of Example 4. Without loss of generality, suppose η < 1/2. I verify the conditions listed in the proof

of Example 1 in both cases as follows.

(i) rµ,n = O(n−1/2), take bn = n−η/2. Note that 1 ≫ bn ≫ re,n. Then, taking η
′ = η/2, I obtain

rµ,nre,nb
(γ0−2)/2
n nη/2 ≪ rµ,nn

−ηnη/4nη/2 ≪ n−1/2,

and rµ,nb
γ0/2
n = rµ,no(1) = o(n−1/2).

(ii) Take bn = n−1/2 log(n). Note that 1 ≫ bn ≫ re,n. Then, taking η
′ = η, I obtain:

rµ,nre,nb
(γ0−2)/2
n nη = log(n)(γ0−2)/2rµ,nre,nn

(2−γ0)/4nη ≪ re,n = O(n−1/2),

and rµ,nb
γ0/2
n ≪ n(γ0−2)/4n−γ0/4 = n−1/2.

B.6 Rules of Thumb

Proof of Lemma 1. First, I show that there is at least one such solution.
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Recall the equation:

fn(b) =
b 1n
∑

1{ê(X) ≤ b}√
1
n

∑
D

max{ê,b}2

+ b2

√
1

n

∑ D

max{ê, b}2
− n−1/2.

When b = 0, fn(b) is well-defined:
∑
D/ē is finite, so supD/ē2 is finite. Because the first two terms of fn(b)

include multiplication by b, fn(0) = 0.

When b = 1:

fn(1) =

(√
1

n

∑
D

)−1

+

√
1

n

∑
D − n−1/2

>

(√
1

n

∑
D

)−1

− 1 ≥ 0.

The final line holds because 1
n

∑
D ∈ (0, 1] by assumption.

Define b−n = sup b ≤ 1 | fn(b) ≤ 0. Define b+n = inf b ≥ b−n | fn(b) ≥ 0. Because fn(0) ≤ 0 ≤ fn(1), both

of these values are well-defined. Therefore, for every b satisfying b−n < b < b+n , it is the case that fn(b) is a

well-defined real number that satisfies both fn(b) > 0 and fn(b) < 0. No such number exists, so it must be

that b−n = b+n . Define bn to be that value.

Next, I show that there is a unique solution. In particular, I show that ĝn(b) ≡ b 1
n

∑
1{ê(X)≤b}√

1
n

∑
D

max{ê,b}2
+

b2
√

1
n

∑
D

max{ê,b}2 is a strictly increasing function of b for b ≥ mini êi. As b increases, the first term’s

numerator strictly increases and the denominator weakly decreases. As a result, the first term strictly

increases in that range. For b < mini êi, the first term is zero and as a result is weakly increasing. The

second term can be rewritten as

√
1

n

∑
Dmin{ê−2b4, b2},

which is a strictly increasing function. As a result, fn(b) is a strictly increasing function in the desired range,

so that there can be at most one solution.

B.7 Limitations

Proof of Corollary 3. Take P to be the distribution that draws e(X) from the CDF P (e(X) ≤ π) = πγ0−1

and draws Y | X,D ∼ N (0, 1). let P = {P}. Such a family confirms to the requirements of Assumption 1

by construction.

Because re,n ≪ bn, let n be large enough that bn > 2re,n and (bn − re,n)
γ0−2 > 2. Recall that γ0 < 2 by
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assumption, so that I can divide by 2− γ0.

Take the nuisance estimate for the sequence P (n) = P as µ̂(X) = µ(X)− rµ,n and ê(X) = e(X) + re,n.

The bias of the clipped estimator ψ̂AIPWclip (bn) with n observations is:

EP

[
ψ̂AIPWclip (bn)− ψ(P )

]
= E

[
(µ̂(X)− µ(X))

(
D

max{ê(X), bn}
− 1

)]
= rµ,nE

[(
1− D

max{e(X) + re,n, bn}

)]
= rµ,nE

[
1{e(X) ≤ bn − re,n}

bn − e(X)

bn
+ 1{e(X) > bn − re,n}

re,n
e(X) + re,n

]
≥ rµ,nb

−1
n E [1{e(X) ≤ bn − re,n}(bn − e(X))]

≥ rµ,nb
−1
n E [1{e(X) ≤ bn/2}(bn − e(X))]

≥ rµ,n
2
E [1{e(X) ≤ bn/2}]

= rµ,nb
γ0−1
n 2γ0−2.

It is convenient to write Bn =
EP [ψ̂AIPW

clip (bn)−ψ(P )]
σn

for this proof.

By the proof of Corollary 1, there is a C−1 > 0 such that σn ≥ Cn−1/2b
γ0/2−1
n for all n large enough.

For such n:

Bn =
EP

[
ψ̂AIPWclip (bn)− ψ(P )

]
σn

≥ C2γ0−2n1/2rµ,nb
γ0−1
n b1−γ0/2n

= C2γ0−2n1/2rµ,nb
γ0/2
n

≥ C2γ0−2n1/2rµ,nr
γ0/2
e,n → ∞.

Note also that:

V ar
(
ψ̂AIPWclip (bn)

)
=

1

n
V ar

(
µ+

D

max{ê, bn}
(Y − µ) + rµ,n1{e ≥ bn, X ∈ XQ}}

(
1− D

e+ re,n

))
=

1

n
V ar

(
µ+

D

max{ê, bn}
(Y − µ)

)
+ rµ,n

1

n
V ar

(
1{e ≥ bn, X ∈ XQ}}

(
1− D

e+ re,n

))
≤ σ2

n +
ϵrµ,n
n

(
V arQ

(
re,n1{e ≥ bn}

e+ re,n

)
+ EQ

[
e(1− e)1{e ≥ bn}

(e+ re,n)2

])
≤ σ2

n +
ϵrµ,n
n

(
EQ

[
1{e ≥ bn}

(
r2e,n + e

)
e2

])
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≤ σ2
n +

2ϵrµ,n
n

EQ
[
1{e ≥ bn}e−1

]
= σ2

n +
2Cϵrµ,n(γ0 − 1)

n

∫ 1

bn

tγ0−3dt

= σ2
n +

2Cϵrµ,n(γ0 − 1)

n(2− γ0)

∫ 1

bn

(bγ0−2
n − 1)

≤ σ2
n + rµ,n

2Cϵ(γ0 − 1)

2− γ0

bγ0−2
n

n

= σ2
n + o(σ2

n). (Proof of Corollary 1)

Next, I show that the conditions of Lemma 16 hold. The requirements are that the conditions of Propo-

sition 1, re,n ≪ bn, and rµ,n → 0. By assumption, n−1/2 ≪ re,n ≪ bn ≪ 1 and rµ,n → 0. There-

fore rµ,n
re,n+bn
bn

→ 0 and the conditions of Proposition 1 hold as well. Therefore, Lemma 16 applies,

σ̂2
n/V ar(ψ̂

AIPW
clip (bn)) →P 1 and E

[
ψ̂AIPWclip (bn)− ψ(P )

]
→P ∞. As a result,

EP [ψ̂AIPW
clip (bn)−ψ(P )]

σ̂n
→P ∞

and for any fixed α > 0,

P (ψ(P ) ∈ Ĉn) = P

(
ψ̂AIPWclip (bn)− ψ(P )

σ̂n
∈ [zα/2, z1−α/2]

)

= P

 ψ̂AIPWclip (bn)− E
[
ψ̂AIPWclip (bn)

]
σn + oP (σn)

∈
[
Bn + zα/2 + oP (1), Bn + z1−α/2 + oP (1)

]
= P

(
OP (σn)

σn + oP (σn)
∈
[
Bn + zα/2 + oP (1), Bn + z1−α/2 + oP (1)

])
→P 0,

with the limit holding because Bn tends to infinity.

Proof of Proposition 3. First, I show that this rate of convergence is achievable for Nadaraya-Regression for

any distribution P ∈ P and an arbitrary x0 ∈ [−1, 1]d. Let the lower density bound be f
¯
. For simplicity,

assume that e(X) has a continuous density. Fix some such distribution P ∈ P and take a bandwidth

hn = n−1/(2βµ+d+d/(γ0−1)). Note that:

P (D = 1, ∥X − x0∥ ≤ hn) ≥ P
(
D = 1, e(X) ≤ F−1

e(X) (P (∥X − x0∥∞ ≤ hn))
)

≥ P
(
D = 1, e(X) ≤ F−1

e(X)

(
hdn
))

≥
∫ (C/f

¯
)−1/(γ0−1)hd/(γ0−1)

n

0

C(γ0 − 1)ttγ0−2dt

= f
¯

γ0/(γ0−1)C
γ0 − 1

γ0 − 2

(
C−1/(γ0−1)hd/(γ0−1)

n

)γ0
= f

¯

γ0/(γ0−1)C−1/(γ0−1) γ0 − 1

γ0 − 2
hd+d/(γ0−1)
n .
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Since V ar(Y | X,D) ≤M , by standard arguments, the Nadaraya Watson variance conditional on the {X,D}

data is with high probability upper bounded by a term on the order of n−1h
d+d/(γ0−1)
n = n−2βµ/(2βµ+d+d/(γ0−1)).

Further, with high probability, the conditional prediction bias is bounded by Lh
βµ
n = Ln−βµ/(2βµ+d+d/(γ0−1))

by standard Hölder smoothness arguments. Therefore, for every x0 ∈ [−1, 1]d, the conditional mean squared

error of µ̂(NW )(x0 | hn(θ)) is OP (r2n), with a constant that only depends on θ. (i) then follows by Markov’s

inequality.

Next, I show that there is a family for which this rate is the optimal rate of convergence for Nadaraya-

Watson regression. For every γ0 > 1, let P be the family of distributions for which X ∼ Unif([−1, 1]d),

D | X ∼ Bern(∥X∥d/(γ0−1)
∞ , µ(X) is in Σ(βµ, L), and Y | X,D ∼ N (µ(X), 1). By analysis of the Irwin-Hall

distribution, P (e(X) ≤ π) = P (∥X∥∞ ≤ π(γ0−1)/d) = Cπγ0−1 for some C > 0 and all π small enough. As a

result, this family satisfies the constraints of Assumption 1 and Proposition 3 for some fixed θ∗ ∈ Θ.

Now consider the variance and bias of Nadaraya-Watson regression for predicting E[Y | X,D = 1] over

a sequence of P (n) ∈ P. Take an arbitrary sequence of positive bandwidths hn → 0 so that there is a hope

for consistency. For simplicity, consider the uniform kernel with L∞ distance. Let Mn(hn) be the number

of treated observations with ∥X − 0∥∞ ≤ hn for a bandwidth hn. Fix some hn < min{1, η/d}. Because

µ̂(x0 | hn) is the sum of independent normal random variables, there is a closed-form:

µ̂(x0 | hn)− µ(x0) | {X,D} ∼ N
(∑

D1{∥X − x0∥∞ ≤ hn}(µ(X)− µ(x0))∑
D1{∥X − x0∥∞ ≤ hn}

, 1/Mn(hn)

)
.

By standard arguments, there is a P ∈ P, α > 0, and a c(θ) such that for every sequence of positive hn → 0,

lim inf
n→∞

P

(∑
D1{∥X − x0∥∞ ≤ hn}(µ(X)− µ(x0))∑

D1{∥X − x0∥∞ ≤ hn}
≥ c(θ)hβµ

n

)
> α

lim inf
n→∞

P
(
1/Mn(hn) ≥ c(θ)2n−1h−d−d/(γ0−1)

n

)
> α.

Therefore, for every sequence of hn → 0 and P (n) ∈ P,

EP (n)[(µ̂
(NW )(x0 | hn)− µ(x0))

2 | {X,D}] ≿P (n) n
−1h−d−d/(γ0−1)

n + n−1/(2βµ+d+d/(γ0−1))

≥ min
hn>0

n−1h−d−d/(γ0−1)
n + n−1/(2βµ+d+d/(γ0−1))

≿ n−βµ/(2βµ+d+d/(γ0−1),

with associated constants in the ≿ terms that only depend on θ. Therefore there is a C ′(θ) and C ′′(θ) such
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that

P (n)
(
P (n)

(
(µ̂(NW )(x0 | hn)− µ(x0))

2 | {X,D} ≥ C ′(θ)rn

))
> C ′′(θ) > 0

for all n large enough. Thus, (ii) holds.
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