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Abstract

This paper extends empirical models of dynamic bargaining to allow for the possi-

bility of nontransferable utility. The model agrees with Nash bargaining when utility is

transferable, but leverages the Kalai proportional bargaining solution to enable identi-

fication in the presence of uncertainty over nontransferable Pareto frontiers. The model

extends the class of dynamic bargaining models for which there is a known valid general

method of moments estimation strategy to include agreements that have foreseeable

and nontransferable contracting externalities on the distribution of future states, and

the model uniquely possesses a discrete-time representation even when bargaining is

defined in continuous time. I estimate an empirical model in this class using novel

hospital–insurer contract panel data from West Virginia, where agreements had non-

transferable contracting externalities on other deals reached while the terms remained

in place. I find that dynamic aspects of bargaining are important: the estimated annual

discounting rate of 0.899 corresponds to a strong forward-looking response.
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1 Introduction

Prevailing empirical models of bargaining are either static, transferable utility (TU), or

both. In static models, the world is one-period and negotiators know all states at which

any bargain will take place. In TU models, negotiators possess an instrument (typically

price) that helps one party as much as it harms the other side. TU models allow the Nash

bargaining solution to be derived by first choosing an agreement that maximizes bilateral

surplus, and then choosing a utility transfer to achieve desired surplus shares.

In dynamic settings, TU corresponds to a strong, and often unrealistic, restriction that

prices do not affect any future negotiation. For example, in industrial organization, TU

precludes staggered contracting, because a price negotiation between a retailer and a sup-

plier could otherwise have a foreseeable and nontransferable externality on how the retailer

negotiates with other suppliers while the contract remains in place. In labor economics, TU

requires employers to fully match outside offers, because initial wages would otherwise have

a nontransferable externality on with the employee’s post-departure income. The restric-

tions imposed to achieve TU can rule out important aspects of bargaining, but dynamic

nontransferable utility (NTU) Nash bargaining models are generally limited to theory (Do

and Miklós-Thal, 2022) or calibration (Gertler and Trigari, 2009; Gottfries, 2022).

The first contribution of this paper is to show that when bargaining involves potential

uncertainty over NTU Pareto frontiers, Nash bargaining weights are unidentified. For any

bargaining weights τ1, τ2 ∈ (0, 1), I provide a distribution of feasible utilities for which the

outcome of choosing a price ex ante through Nash bargaining with weight τ1 is observationally

equivalent to the outcome of choosing a price ex post through Nash bargaining with weight

τ2. As a result, Nash bargaining weights are not identified unless the econometrician knows

whether bargaining occurs ex ante or ex post. I show that identification for this class of games

is only possible under a timing property that Myerson (1981) calls concavity. Myerson shows

that in social choice problems, very few solution concepts satisfy independence of irrelevant
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alternatives (IIA) and concavity. By extending his characterization to bargaining problems,

I show that only one bargaining solution satisfying IIA enables identification: the Kalai

(1977) proportional bargaining solution.

The second contribution of this paper is to propose a new bargaining model, which I

call the Nash-in-Kalai bargaining model. The model is a Nash equilibrium in recursively-

defined Kalai proportional bargains over expected net present values. The Kalai proportional

solution maximizes joint surplus, subject to choosing an agreement along the ray of utility

pairs that achieve the desired surplus shares. In the model, gains from trade are calculated

taking as given past outcomes and current strategies, but are recursively defined in terms

of future negotiations that may be uncertain and influenced by the terms of the current

contract. The solution concept agrees with Nash-in-Nash bargaining in TU games, because

the agreement achieving the maximum surplus along the desired-surplus-share ray (Kalai

proportional bargaining) is the agreement maximizing joint surplus with a utility transfer

to achieve desired surplus shares (Nash bargaining). This paper characterizes some unique

advantages of Kalai proportional bargaining in dynamic NTU games.

I derive sufficient conditions for nonparametric identification of Kalai proportional bar-

gaining parameters. When agreements are single-period but potentially uncertain, Kalai

proportional bargaining weights are identified, but Nash bargaining weights are unidentified.

This is because under Kalai proportional bargaining, both ex ante and ex post negotia-

tors choose transfers that achieve the same shares of gains in expectation, but under Nash

bargaining, the realized Pareto frontier influences ex post negotiators’ share of gains from

trade. With multiperiod agreements, the forward-looking Nash-in-Kalai model is unidenti-

fied due to the existence of an observationally equivalent static representation. To achieve

nonparametric identification with multiperiod agreements, I propose two different sufficient

conditions. First, there is identification if there are no unobserved components of utility and

there is variation in agreements conditional on the observed states. In this case, the discount-

ing rates is identified from the association of future states and starting prices. Alternatively,
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there is identification if an instrument satisfies an exclusion restriction of only affecting value

functions through inflation expectations. In this second case, the discounting rate can be

identified from the instrument’s joint association with future inflation and starting prices.

The proof of multiperiod identification relies on a convenient equivalent representation of

the Nash-in-Kalai solution. Under recursive Kalai proportional bargaining, negotiators (and

the econometrician) can replace the value of one disagreement with the value of repeated

disagreement. This simplification is especially valuable for empirical work when disagreement

may be short-lived, as the value of repeated disagreement, which Binmore et al. (1989)

call the impasse point, is uniquely defined in discrete time even as disagreement becomes

arbitrarily short. This dynamic advantage corresponds to a static utility property that Kalai

(1977) calls step-by-step, and which is essentially unique to Kalai proportional bargaining.

The third contribution of this paper is to show that Nash-in-Kalai bargaining provides

a moment on expected net present value (NPV) transfers, enabling general method of mo-

ments (GMM) estimation of bargaining parameters. The expected transfer is the sum of

the expected NPV of Nash-in-Nash flow transfers, a transfer to split negotiation costs, and

a transfer to reflect the any difference between the Nash-in-Nash disagreement point, which

reflects disagreement at future equilibrium prices, and the Nash-in-Kalai impasse point,

which reflects disagreement at the prices that others form under impasse. This expected

NPV transfer coincides with the Nash-in-Nash prediction in the case of TU bargaining, but

the Nash-in-Kalai moment holds whether bargaining is TU or NTU, whether uncertainty is

resolved before or after bargaining, and whether the equilibrium is stationary or nonstation-

ary. Econometric errors can reflect either expectational error from uncertainty or unobserved

components of utility, facilitating GMM estimation with appropriate instruments.

The main restrictions for the Nash-in-Kalai moment are that negotiators must share a

common discounting rate and unbiased beliefs about future conditions. These assumptions

are substantive, but often plausible in settings in which the leading sources of uncertainty

are shared. Further, these conditions are required to derive a consistently-defined moment
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on expected NPV transfers: two sides need to share a discounting rate to unambiguously

map a path of transfers to a NPV, two sides need symmetric beliefs in order to agree on the

expected NPV transfer, and the beliefs must be accurate in order for the econometrician to

use realized transfers in GMM estimation.

I estimate an empirical model in this class using a public record administrative dataset

from West Virginia on hospital–insurer contracts, which in other settings have been consid-

ered trade secrets. Critically, the data shows that contracts were staggered, with realized

terms running from three years to more than one decade. Staggered contracts are only con-

sistent with TU bargaining under myopia. If negotiators are forward-looking about staggered

contracts, then they will foresee the NTU externality of an initial contract term with the

market state at both sides will negotiate with others while the contract remains in place.

My empirical model and estimation strategy generally follow the GMM approach in Ho and

Lee (2017), but I allow negotiators to balance multiple periods of profits. The discounting

rate β is identified by the predictable larger effect of increasing β on NPV transfers for firms

with longer-lived contracts and faster price growth.

The estimated model clearly rejects a static view of the world. The staggered contracts

reject a literally static model. The estimated annual discounting rate of β = 0.899 rejects

the null hypothesis of myopia needed to maintain TU bargaining, and implies that expected

future conditions have an important role in shaping current prices. I also compare the

estimated bargaining parameters with the results of a static Nash-in-Nash model that only

uses one year of payments as an input, and assumes that all payments reflected recently-

formed agreements. I find that the static Nash-in-Nash approach would underestimate small

insurers’ bargaining weight, likely because smaller insurers’ high current prices partially

reflect accumulated price growth under long-lived contracts.

The Nash-in-Kalai model proposed here is an extension of the TU Nash-in-Nash bargain-

ing model. I follow Lee et al. (2021)’s excellent introduction to this literature and refer to the

effect of a contracted term on other strategic decisions as a “contracting externality.” Most
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empirical Nash-in-Nash work employs a static model as an approximation to a true dynamic

process. The TU case includes many static empirical models of American healthcare and

telecommunications (Ho and Lee, 2017, 2019; Crawford et al., 2018), the microfoundations

of static Nash-in-Nash (Collard-Wexler et al., 2019), and the smaller literature on dynamic

Nash-in-Nash (Lee and Fong, 2013; Liu, 2021; Tiew, 2022; Deng et al., 2023). There is

empirical work on static NTU bargaining, particularly in models in which a negotiated up-

stream price has a direct and nontransferable effect on quantity supplied (Grennan, 2013;

Gowrisankaran et al., 2015; Ghili, 2022), and theoretical work on dynamic NTU Nash-in-

Nash bargaining in triangular markets (De Fraja, 1993; Bárcena-Ruiz and Casado-Izaga,

2008; Do and Miklós-Thal, 2022).1 The Nash-in-Nash and Nash-in-Kalai models do not

coincide for NTU bargaining, but a hypothetical dynamic NTU Nash-in-Nash model would

have similar predictions to a dynamic Nash-in-Kalai model if bargaining is close to TU, or

more generally when the dynamic Nash solution predicts an approximately-fixed bilateral

surplus share over time.

The leading case of dynamic bargaining models for observational data involve wage ne-

gotiations. Models of search-on-the-job generally impose a TU bargaining game or a split-

the-surplus outcome (Cahuc et al., 2006; Bagger et al., 2014; Bilal et al., 2022; Jarosch et al.,

2024). Gertler and Trigari (2009) and Gottfries (2022) propose models of NTU wage bargain-

ing in stationary settings, which require calibration for empirical practice. I provide most

identification results in the context of two agents bargaining on their own, so the associated

theoretical advantages of the Kalai proportional solution concept apply to wage negotiation

after slight adjustments to the empirical model.

This work also contributes to the theoretical literature on multilateral solution concepts.

Kalai (1977) and Roth (1979) show that the step-by-step property for static utility is essen-

1An aside on notation. I follow the coalitional bargaining literature and use “NTU” to refer to the
generalization of TU bargaining problems to asymmetric or nonlinear Pareto frontiers (Mas-Colell and Hart,
1996). In matching problems, “NTU” is used to refer to extreme cases in which no compensation is possible,
and “imperfectly transferable utility” is used to refer to cases that this paper would call NTU (Galichon
et al., 2019). The matching NTU definition rules out bargaining, so I use the more general coalitional NTU
definition.
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tially unique to Kalai proportional bargaining. I show that the step-by-step property is a

valuable state simplification property in dynamic games, and yields Binmore et al. (1989)’s

impasse point as an equivalent disagreement value. My results for (non)identification with

single-period agreements relate to Myerson (1981)’s result that among social choice func-

tions that satisfy IIA, only utilitarian end egalitarian solutions satisfy concavity. Relative to

Myerson’s uniqueness result, I show that concavity is a necessary condition for identification

with potential uncertainty, show that scale-invariance (as in Nash bargaining) is incompat-

ible with concavity, extend uniqueness to bargaining problems, and note that utilitarian

bargaining weights are only partially identified.

My results for identification in multiperiod agreements also relate to the literature on

(non)identification in dynamic discrete choice models (Abbring, 2010), in particular the

nonidentification results of Rust (1994) and Magnac and Thesmar (2002). My first proposed

condition for nonparametric identification is motivated by a remark by Rust (1994). My

second condition is motivated by Magnac and Thesmar (2002)’s proposed identification from

an exclusion condition in dynamic discrete choice problems. In dynamic discrete choice

problems, the first set of conditions is known to be insufficient for identification (Rust, 1994)

and the second condition has no natural analog.

The plan of the paper is as follows. Section 2 reviews some key concepts for bargaining

in utility space, proves that Nash bargaining weights are unidentified in the presence of NTU

bargaining with possible uncertainty, and shows that Kalai proportional bargaining is the

unique solution satisfying IIA and identification in single-period games. Section 3 extends

the model to consider infinite-length games with two agents, shows that Kalai bargaining

identification carries over with single-period but not multiperiod agreements, illustrates the

step-by-step property for simplifying recursive Kalai proportional bargaining, and provides

two different sufficient conditions for identification with multiperiod agreements. Section 4

further extends the model to consider many agents negotiating agreements at different times

that interact, and derives a moment on expected NPV transfers. Section 5 describes my
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empirical application to hospital–insurer bargaining in West Virginia. Section 6 concludes.

2 Starting Point: Bilateral Bargaining in a Single-Period

World

To most readers, the Nash-in-Kalai model will suggest several questions:

(1) What is Kalai proportional bargaining?

(2) Why is Kalai proportional bargaining only sometimes the same as Nash bargaining?

(3) Why is an alternative to Nash bargaining needed for dynamic games? and

(4) Why might Kalai proportional bargaining be the right alternative?

I answer the first two questions by reviewing some key concepts for static bargaining in

utility space. I answer the last two questions with new results on identification for two

agents negotiating over a price to apply for the world’s single period.

2.1 What is Kalai Proportional Bargaining?

The Kalai proportional bargaining solution is a solution concept for Nash’s bargaining

problem.

A Nash bargaining problem G (for game) is a closed set S of feasible agreement values

in R2 and a disagreement value vD ∈ S. I use “≥” and “>” to refer to the pointwise

comparison: s ≥ s′ if and only if s1 ≥ s′1 and s2 ≥ s′2, and analogously s > s′ means both

sides strictly prefer s to s′. I will make a few regularity assumptions on S.

Assumption 1 (Regularity conditions). The family of games G satisfies convexity (for all

s1, s2 ∈ S and λ ∈ [0, 1], λs1 + (1 − λ)s2 ∈ S) and comprehensiveness (if s ∈ S and

vD ≤ s′ ≤ s, then s′ ∈ S).
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Convexity is an important regularity condition for bargaining games (Shimer, 2006),

and generally reduces a bargaining problem to a Pareto frontier and disagreement value.

Comprehensiveness ensures that Kalai proportional bargaining is well-defined (Roth, 1979).

The comprehensive convex hull of {s1, . . . , sk} is the set of s ∈ R2 such that s ≤
∑

j λjsj for

some nonnegative λj summing to one (Myerson, 1981).

Within a bargaining game, there are many ways of choosing an allocation that makes both

sides better off than disagreement. A particular bargaining solution is a function f : G → R+

such that f(S, vD) ∈ S and f(S, vD) ≥ vD. I write that f ′ = f on G if for all (S, vD) ∈ G,

f(S, vD) = f ′(S, vD), and shorthand f ′ = f if the two are equal for all games or G is clear

in context.

Definition 1 (Kalai proportional bargaining). The Kalai proportional bargaining solution

with player-1 weight τ ∈ [0, 1] is f
(Kalai)
τ (S, vD) = (max t : (tτ, t(1− τ)) ∈ S) (τ, 1− τ).

vD

PF

VKalai
A

Insurer Value

H
os
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vD
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VNash
A

Insurer Value

H
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Figure 1: Left: the Kalai proportional bargaining solution for bargaining between an insurer
(x axis) and hospital (y axis) with Pareto frontier PF in light blue and disagreement value
vD in red, and Pareto constrained indicated by dotted lines. The desired-surplus-split ray
v = tp is indicated by the dashed blue line, and the resulting agreement is indicated by vAKalai.
Right: the Nash bargaining solution to the same game. The dashed line indicates the Nash
bargaining indifference curve, and the resulting agreement is indicated by vANash.
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The Kalai proportional solution for bargaining between a hospital (player 2) and insurer

(player 1) is illustrated in Figure 1(a). I draw a dashed ray to indicate the values v ∈ S that

yield positive gains from trade and the desired surplus split τ(v2 − vD2 ) = (1− τ)(v1 − vD1 ).

The solution V A
Kalai is the best agreement along this desired-surplus-split ray.

2.2 Why is Kalai Bargaining Only Sometimes the Same as Nash

Bargaining?

Definition 2 (Nash bargaining). The Nash bargaining solution with player-one bargaining

weight τ ∈ [0, 1] is f
(Nash)
τ (S, vD) = argmaxv∈S

(
v1 − vD1

)τ
(v2 − vD2 )

1−τ .

The Nash bargaining solution is illustrated in Figure 1(b). The Nash bargaining solution

can be viewed as maximizing a joint utility function, with player one receiving greater weight.

The joint utility function generates a joint indifference curve. In well-behaved problems with

negotiations over a price, the Nash bargaining first-order condition at the agreed price p∗Nash

can be rewritten as:

τv′1(p
∗
Nash)(v

∗
2 − vD2 ) = −(1− τ)v′2(p

∗
Nash)(v

∗
1 − vD1 ).

Kalai and Nash bargaining will have the same predictions when bargaining is TU: if the

Pareto frontier is a line segment with a constant slope of negative one.

Assumption 2 (Transferable utility). A bargaining game family satisfies Assumption 1

and each element satisfies transferable utility if S is the comprehensive convex hull of vD,

vD + (v, 0), and vD + (0, v) for some v > 0.

Equivalence follows by algebra.

Lemma 1 (Nash and Kalai coincide for TU games). Suppose G satisfies Assumption 2.

Then f
(Nash)
τ = f

(Kalai)
τ on G.
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Proof. Let G ∈ G be given. For s on the Pareto frontier of S, write p(s) =
s2−vD2
v̄2−vD2

. Then

v∗2 + v∗1 = vD2 + vD1 + v and

τv′1
(
p
(
f (Nash)
τ (S, vD)

))
(v∗2 − vD2 ) =

τ(f
(Nash)
τ (S, vD)2 − vD2 )

v̄2 − vD2

= (1− τ)v′2
(
p
(
f (Nash)
τ (S, vD)

))
(v∗1 − vD1 ) =

(1− τ)(f
(Nash)
τ (S, vD)1 − vD1 )

v̄2 − vD2
,

so that τ(v∗2 − vD2 ) = (1 − τ)(vD1 + v − v∗2 − vD1 ). But f
(Kalai)
τ satisfies the same constraint.

Therefore f
(Nash)
τ (S, vD) = f

(Kalai)
τ (S, vD).

Some important advantages of Nash bargaining are that it is weakly Pareto-optimal and

satisfies independence of irrelevant alternatives and scale-invariance (Serrano, 2005).

Definition 3 (Bargaining properties). For a ∈ Rd for d = 1 or 2, let aS = {as : s ∈ S}. A

bargaining solution f is (i) weakly Pareto-optimal (WPO) if for all S, vD, there is no s ∈ S

such that s > f(S, vD); (ii) satisfies independence of irrelevant alternatives (IIA) if T ⊆ S

and f(S) ∈ T implies f(T, vD) = f(S, vD); and (iii) is scale-invariant if for all a ∈ R2 such

that a > 0, f(aS, avD) = af(S, vD).

WPO is a minimal condition for a bargaining solution. IIA is a necessary condition

for f to maximize some notion of utility (Myerson, 1981).2 Scale invariance implies that

if one modifies the scale of one side’s gains from trade by a fixed constant, then the other

side’s outcome is unaffected. I slightly abuse notation and write that if f satisfies IIA, S

satisfies Assumption 1, and f(S, vD) ∈ T ⊆ S, then f(T, vD) = f(S, vD) even if T is not

comprehensive.

Kalai proportional bargaining is not scale invariant, so it can only coincide with Nash

bargaining within a family of games like TU that implicitly define a scale of relative utility.

Evidence from the lab suggests the negotiators can be scale-varying in monetary games

(Nydegger and Owen, 1974; Duffy et al., 2021). Two important conditions which Kalai

2The IIA axiom can be replaced by lower-level conditions that are outside the scope of this work (Thomson
and Myerson, 1980).
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proportional bargaining solutions and not Nash bargaining solutions satisfy are concavity

and step-by-step, which I discuss later.

This completes the review of static bargaining in utility space. I now move to consider

dynamic games, beginning with dynamic games that result in one-period agreements.

2.3 Why is an Alternative to Nash Bargaining Needed?

I now show that for any τ, τ ′ ∈ (0, 1), there is a distribution of utility functions for which

ex ante bargaining over a price to apply to the uncertain utility functions under f
(Nash
τ )

and ex post Nash bargaining over a price to apply to the realized utility functions under

f
(Nash)
τ ′ both produce a constant price of zero. As a result, Nash bargaining weights can only

be identified with knowledge of whether negotiations occur before or after the realization

of uncertainty. Empirical dynamic models are often applied to settings with information

that is realized over time, making it unappealing to require the econometrician to take a

substantive stance on unobservable information timing just to identify bargaining weights.

Consider the following class of games:

1. If EA = 1 (for ex ante), the players have the opportunity to negotiate over a price

p ∈ R using bargaining solution f .

2. The game type R is drawn from a distribution P and revealed to the players.

3. If EA = 0, the players have the opportunity to negotiate over a price p ∈ [0, 1].

4. If the sides have an agreement (A = 1), then player 1 receives utility u1(p | R) and

player 2 received utility u2(p | R). If the sides have no agreement (A = 0), then both

receive uD
i = 0. I assume that for all R, there is a p ∈ R producing strict gains for

both sides, i.e. with u(p | R) > 0.

5. The econometrician observes the distribution P , the game type R, the functions u1

and u2, and the price p∗.
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I require some notation for showing that bargaining weights, and more generally bar-

gaining solutions, are not identified. This section stays in a single-period world, so for now,

a structure b is a value of EA, a distribution P , utility functions u, and strategies σ such

that σ is the output of applying f to the generated bargaining problem. Note that a WPO

bargaining solution generally achieves a Nash equilibrium, so that when f is a Nash bargain-

ing solution, this is a Nash-in-Nash model (Lee et al., 2021), and when f is a proportional

bargaining solution, this is a Nash-in-Kalai model, which I formalize later. I abuse notation

and write f(b) for the bargaining solution under b.

I write that b and b′ are observationally equivalent if they generate the same observables:

u1, u2, P and the joint distribution of (R, p∗). I shorthand observational equivalence as b ⇔ b′.

I write that bargaining solutions f are equivalent if for every b with the bargaining solution

f , there is a b′ with the same EA,P, u, the bargaining solution f ′, and some σ′ such that

b′ ⇔ b. In this case, I write f ⇔ f ′.

Definition 4 (Single-period identification). Let F be a family of bargaining solutions. I

write that F is single-period identified if b ⇔ b′ implies f(b) ⇔ f(b′). I write that F is

single-period unidentified if F is not single-period identified.

If F is not single-period identified, then an econometrician who mistakenly conjectures

that bargaining is ex post (EA = 0) can infer a bargaining solution that has the wrong

counterfactual prediction even with known information structure.

For these single-period games, Nash bargaining weights can only be identified with knowl-

edge of EA: it is possible to construct a game for which incorrectly conjecturing EA yields

to an arbitrarily wrong estimate of the Nash bargaining weight τ .

Proposition 1 (Single-period Nash nonidentification). Let F be a family of bargaining

solutions that include f
(Nash)
τ and f

(Nash)
τ ′ for some distinct τ, τ ′ ∈ (0, 1). Then F is single-

period unidentified.

Proof. Without loss of generality suppose τ ′ ≥ τ . Let s =
√

1− τ ′(1−τ)
(1−τ ′)τ

∈ [0, 1). Take
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u1(p | r) = τrs − p, u2(p | r) = 1 + r−s

1−τ
p, P = Unif(0, 1), f ′ = f

(Nash)
τ ′ , and f = f

(Nash)
τ .

Note that E[Rs] = 1/(1 + s) and E[R−s] = 1/(1 − s). Let b be a structure generated by

(EA = 0, f), let b′ be a structure generated by (EA = 1, f ′), and let b′′ be the structure

generated by (EA = 0, f ′).

In b, by inspection, every realized bargaining game satisfies Assumption 1. By scale

invariance, the negotiated price is the price predicted by a game with player 2 gains instead

(1− τ)rg + p, so that under b, p∗ = 0 almost surely.

In b′, the ex ante gains are τ
1+s

− p and 1 + 1
(1−τ)(1−s)

p, respectively. This produces an

equivalent price to a gain with gains τ
1+s

− p and (1− τ)(1− s) + p, respectively, which by

inspection generates p∗ = 0. Therefore b ⇔ b′.

But b ⇎ b′′, so f ⇎ f ′′ and F is single-period unidentified.

The proof uses only the scale-invariance property of Nash bargaining, and so it extends to

any family that includes scale-invariant bargaining solutions with distinct interior predictions

for TU games.

In dynamic games, it is useful to be able to identify bargaining weights without specifying

exactly when information is observed. As a result, I propose going beyond Nash bargaining.

2.4 Why is Kalai Proportional Bargaining the Right Alternative

for Dynamic Games?

Kalai proportional bargaining turns out to be the only bargaining solution that can

identify bargaining weights for games in this class while satisfying IIA.

Assumption 3 (IIA and span). F is a family of bargaining solutions that satisfy IIA; are

distinct in the sense that no separate f, f ′ ∈ F satisfy f = f ′ for all G generated by single-

period games; and span all Pareto-efficient outcomes in the sense that if s > vD is Pareto

optimal in some S, then there is an f ∈ F such that f(S, vD) = s.
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The span assumption is that the model is always able to infer a bargaining weight from

a Pareto-efficient agreement. This assumption holds for families of bargaining solutions that

are amendable to empirical use.

Theorem 1 (IIA and single-period identification implies Kalai proportional bargaining).

Suppose F is a family of bargaining solutions satisfying Assumption 3. Then F is single-

period identified if and only if F is the family of Kalai proportional bargaining solutions.

The proof is on Page 17 and rests on several distinct claims, some of which may be of

independent interest.

An important condition is concavity. Myerson (1981) defines concavity for more general

social choice problems which lack a notion of disagreement. However, bargaining solutions

are essentially special cases of social choice functions applied to a subset of social choice

problems, so the concept can be extended to bargaining games.

Definition 5 (Concavity). For bargaining games G = (S, vD) and G′ = (T, uD) and λ ∈

[0, 1], define λG + (1 − λ)G′ = (λS + (1 − λ)T, λvD + (1 − λ)uD). A bargaining solution f

satisfies concavity if for all G,G′ such that {G,G′} satisfies Assumption 1 and all λ ∈ [0, 1],

f(λG+ (1− λ)G′) ≥ λf(G) + (1− λ)f(G′).

The concavity property is that before the realization of uncertainty, ex ante negotiations

are weakly better than ex post negotiations for all players.

Lemma 2 (Single-period identification implies concavity). Suppose F is a family of bargain-

ing solutions satisfying Assumption 3, and such that there is an f ∈ F that is not concave.

Then F is single-period unidentified.

Proof. At a high level, suppose there is a game in which player two strictly prefers ex post

negotiation with expected value λf(G) + (1− λ)f(G′) to ex ante negotiation with expected

value f(λG+(1−λ)G′). By WPO, player one must prefer the ex ante outcome. Then the ex

post outcome under f is observationally equivalent to an ex ante outcome under a solution

f ′ that is more favorable to player two. For details, see Appendix A.2.
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Concavity is unique to two classes of bargaining solutions: utilitarian bargaining and

proportional bargaining.

Lemma 3 (Concavity and IIA implies utilitarian or egalitarian). Suppose f satisfies WPO,

IIA, and concavity. Then either (i) f ⇔ fKalai
τ for some τ ∈ [0, 1], or (ii) f is utilitarian

in the sense that there is a τ ∈ [0, 1] such that f(S, vD) ∈ argmaxs∈S:s≥vD τ(s1 − vD1 ) + (1−

τ)(s2 − vD2 ) for all S, vD.

Proof. The claim is a gentle extension of Myerson (1981)’s Theorem 2, but requires care to

handle disagreement constraints. The details are in Appendix A.2.

Thomson (1994) provides more background on utilitarian bargaining. A simple property

is that it cannot identify bargaining weights in single-period games.

Lemma 4 (Single-period identification implies not utilitarian). Suppose for all t ∈ [0, 1],

f
(Util)
t (S, vD) ∈ argmaxs∈S:s≥vD t(s1 − vD1 ) + (1 − t)(s2 − vD2 ) for all S, vD. Then if f

(Util)
τ ,

f
(Util)
τ ′ for some τ ∈ (0, 1), τ ′ ∈ [0, 1]/τ , then F is single-period unidentified.

Proof. Without loss of generality assume that τ, τ ′ < 1. Write f = f
(Util)
τ and f ′ = f

(Util)
τ ′ .

Consider the games b and b′ with EA = 0 and f and f ′, respectively, applied to u1(p | R) =

1− p and u2(p | R) = min{τ,τ ′}/2
1−min{τ,τ ′}/2p. Then p∗ = 0 under both games, so b ⇔ b′. Now let b′′,

b′′′ be f and f ′, respectively, applied to u1(p | R) = 1− p and u2(p | R) = (τ+τ ′)/2
1−(τ+τ ′)/2

p. Then

b′′ ⇎ b′′′, so f ⇎ f ′ and F is single-period unidentified.

I am almost ready to prove Theorem 1. I will make use of a moment for identifying Kalai

bargaining weights regardless of the value of EA.

Lemma 5 (Single-period Kalai implies expected transfers). Consider a game (e, j, fKalai
τ )

with outcome p∗e. Then τE[u2(p
∗
e | R)] = (1− τ)E[u1(p

∗
e | R)].

Proof. For games with EA = 1, the claim is immediate. For games with EA = 0, the

realized price satisfies τu2(p
∗
e | R) = (1 − τ)u1(p

∗
e | R) almost surely, so that the expected

transfer holds by iterated expectations.
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Proof of Theorem 1. Direction 1: if F is single-period identified, then it is the family of Kalai

proportional solutions. Proof by contradiction. By Lemma 2, if F is single-period identified,

then each element is concave. By Lemma 3, this and IIA implies that each element is

utilitarian or proportional. By Lemma 4, F contains at most two bargaining solutions that

are not proportional, and both are utilitarian. Then there is an m > 0 such that the game

EA = 0, u1(p) = mp, u2(p) = 1 − p has p∗ ∈ {0, 1} for all utilitarian solutions in F . But

by the span assumption applied to this game, for all τ ∈ (0, 1), f
(Kalai)
τ ∈ F . Now suppose

f ∈ F is utilitarian and not proportional. By single-period identification and f
(Kalai)
τ ∈ F

for all interior τ , f must predict gain-from-trade shares of either one or zero always. But

then f is also proportional. Therefore F only includes proportional solutions. By applying

the span assumption to the game u1(p) = p, u2(p) = 1 − p, F is the family of proportional

solutions.

Direction 2: if every f ∈ F is proportional, then f is single-period identified. Let data

be generated as in Section 2.3 from some f ∈ F with bargaining weight τ . Let τ̂ solve

(1 − τ̂)E[u1(p
∗ | R)] = τ̂E[u2(p

∗ | R)]. By WPO and the existence of a p generating strict

gains from trade, at least one of E[u1(p
∗ | R)] and E[u2(p

∗ | R)] must be strictly positive.

Therefore τ̂ is unique. By Lemma 5, τ̂ = τ . It remains to show that no other bargaining

solution in F is observationally equivalent. Suppose f ′ ∈ F/f . Then by Lemma 5, f ′

generates a different moment. Therefore f ⇎ f ′.

The remainder of this work focuses on the Kalai proportional solution. I now proceed to

a world in which contracts remain in place for multiple periods.

3 Bilateral Bargaining in a Multiperiod World

I characterize nonidentification and identification in a setting with two agents negotiating

with transferable utility in discrete time. I first show that the Kalai model is not identified

with multiperiod agreements. I then describe a static utility property called step-by-step,
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which I show simplifies recursive Kalai proportional bargaining and allows me to provide

sufficient conditions for identification.

3.1 The Multiperiod Kalai Model is Only Identified with Single-

Period Agreements

Consider the following family of infinitely-lived games with transferable utility. Period t

is as follows:

1. Players 1 and 2 learn their period utility shocks εt = (εt1, ε2t), observable state xt in

a discrete space X , unobservable information it, and inflation rate ϕt > 0. I write

ht = (εt, xt, it, ϕt).

2. If the last period ended with a contract in place (et−1 = 0 and ℓt−1 > 1), then the

transfer is pt = ϕtpt−1, the remaining length is ℓt = ℓt−1 − 1, the expiration is et =

1{ℓt ≤ 1}, and I write Rt = 0 for no new negotiation.

3. If last period ended with an expiring or expired contract (et−1 = 1), then the players

can bargain by mutual assent and choose a starting transfer pt for a T -period agreement

(so that ℓt = T , Rt = 1, and the expiration is et = 1{ℓt ≤ 1}) or can disagree (so that

pt = 0, ℓt = 0, et = 0, and Rt = 0).

4. Utility and transition. Player i gets flow utility 1 {ℓt > 0} (ui (xi,t) + εi + pt(2i− 3)− riRt) ,

where ri is player i’s new-contract negotiating cost. ht+1 is drawn from some fixed dis-

tribution P (h′ | h). The econometrician observes (p, ℓ, x).

I implicitly impose that h follows a Markov process. I allow a negotiation cost to validate

successful agreements; I discuss this further in Section 4.1.3.

I impose TU to simplify the analysis of nonparametric identification. As a result, these

games are not exactly a generalization of the previous section’s games, and the identification

results here also extend to recursive TU Nash. If I considered more general games in which
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utility could be nontransferable, then the Nash nonidentification of the previous section

would carry over.

I proceed assuming the agents satisfy certain regularity conditions.

Assumption 4 (Magnac and Thesmar (2002)). E[εt,i | x] = 0, the agents have perfect ex-

pectations about the law of motion P (h′ | h), and P (ε′, x′, ϕ′, i′ | h) = P (ε′ | x, ϕ)P (x′, ϕ′, i′ |

x, ϕ, i).

These are essentially the regularity conditions maintained by Magnac and Thesmar, but

without imposing absolute continuity of ε and including the possibility of unobserved infor-

mation about future states. The final assumption is a conditional independence assumption

that there are no persistent unobservable drivers of utility.

For simplicity, I follow Collard-Wexler et al. (2019) and focus on games in which agree-

ments are always formed. Selection of disagreement on unobservables introduces a selection

bias that can be corrected with distributional knowledge, but which I leave for future work.

Further, even in the case of T = 1 and no unobserved utility, it is impossible to separately

identify the levels of ui(x) from ri: one can increase ui and ri to achieve the same real

outcome. With T -period agreements, it turns out that one can only hope to identify

ũi(x) ≡ ui(x)−
ri∑T

t=1 β
t−1

. (1)

Further, even in the case of no unobserved utility, the payment data cannot separately

identify the components of

p̃(x) ≡ −τ ũ1(x) + (1− τ)ũ2(x). (2)

I implicitly assume that the researcher has access to instruments that identify bargaining

weights from p̃. In Section 2, the instruments are the known realized utility functions.

A structure b is a set b of current-period effective utility functions ũi(x), next-period
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value functions v(p, h, ℓ) for 0 ≤ ℓ′ ≤ T , information i, discounting rate β ∈ (0, 1), and

new-contract choice functions d∗(h) = (ℓ∗(h), p∗(h))T such that if ℓ > 0,

vi(p, h, ℓ) = ui(x) + εi + p+ βE[v(ϕ′p′, h′, ℓ− 1) | h],

v(p0, h, 0) = (v (p∗(h), h, ℓ∗(h))− r) 1 {ℓ∗(h) = T}

v(p0, h, 0) ≥ v (p∗(h), h′, ℓ∗(h))− r,

v(p0, h, 0) ≥ βE[v(p0, h
′, 0) | h].

A structure b is a recursive Kalai solution with bargaining weight τ if v (p∗(h), h, ℓ∗(h))− r

always solves the Kalai proportional bargaining problem over v(p, x, ε, T )− r with disagree-

ment point βE[v(p, h′, 0) | h] and player-one bargaining weight τ .

Definition 6 (Multiperiod identification). I write that two structures b, b′ are observationally

equivalent if P (p′, ℓ′, x′, ϕ′ | p, ℓ, x, ϕ) are the same under b and b′, in which case I write

b ⇔ b′. For a family of structures B, I write that traditional bargaining parameters are

identified under B if b ⇔ b′ implies that p̃(x) are the same functions under b and b′. If

traditional bargaining parameters are not identified, I write that B is unidentified. I write

that β is identified under B if b ⇔ b′ implies that β is the same under b and b′. If traditional

bargaining parameters are identified under B, I write that all bargaining parameters are

identified under B if β is also identified and I write that only β is not identified under B if

β is not identified.

With single-period Kalai proportional agreements, traditional bargaining parameters are

identified.

Proposition 2 (Identification of traditional bargaining parameters with single-period con-

tracts). Let B(1) be the set of structures generated by recursive Kalai bargaining satisfying

Assumption 4 with T = 1, and such that ℓ∗(h) = 1 for all (h) in the support of the game.

Then only β is not identified under B(1).
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Proof. First, I show that traditional bargaining parameters are identified. By Assumption 4,

agreement and disagreement have the same next-period expected value. For any given τ ,

agreements p∗t must satisfy

0 = −τ (u2(x) + ε2 + pt − r2) + (1− τ)u (ũ1(x) + ε1 − p∗t − r1)

= p̃(x)− τε2 + (1− τ)ε1 − p∗t

E[p∗t | x] = p̃(x) + E [−τε2 + (1− τ)ε1 | x] = p̃(x),

with the final line following by Assumption 4. Therefore traditional bargaining parameters

are identified.

Next, I show that β is not identified. Take u1(x) = u2(x) = 1, r = 1/2, and ε = 0

constant. Let b be the Kalai proportional solution with τ = 1/2 and β = 0 and let b′ be the

solution with τ = 1/2 and β = 1/2. By inspection, b ⇔ b′. Therefore β is not identified.

With multiperiod agreements, even traditional bargaining parameters are not identified.

Proposition 3 (Nonidentification and static representation with multiperiod contracts).

Suppose T ≥ 2, let B(T ) be the set of structures generated by recursive Kalai models satisfying

Assumption 4 with contract length T and such that ℓ∗(h) = 1 for all (h) in the support of

the game. Then B(T ) is unidentified.

Proof. Let data follow from some structure b with β > 0 and ε = 0 and no uncertainty, so that

d∗ is deterministic conditional on x. Let b′ be a structure with β = 0, p̃(x) = E[v(p, h, T ) | x],

and ε = 0. Then b ⇔ b′, so that b and b′ are observationally equivalent.

I propose sufficient conditions for identification. My proofs will depend on an essential

tool for dynamic recursive bargaining problems: the step-by-step property for static games.
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3.2 The Step-by-Step Property for Recursive Bargaining

For illustration, consider the Kalai proportional bargaining problem with two-period

agreements (T = 2), no unobservable utility (ε = 0), and constant inflation (ϕt = 0). To

avoid division by zero, assume τ ∈ (0, 1). Then the sides choose a price p∗(x) to satisfy:

τ

1− τ
=

v1 (p
∗(x), x, ε = 0, ϕ = 1, ℓ = 2)− βE [v1(p

∗(x′), x′, 0, 1, 2) | x]
v2 (p∗(x), x, ε = 0, ϕ = 1, ℓ = 2)− βE [v2(p∗(x′), x′, 0, 1, 2) | x]

. (3)

This is a recursive bargaining problem.

The solution turns out to be the same if the negotiators replace the value of one-period

disagreement with the value of two-period disagreement. Hypothetically, imagine the sides

bargain over a two-period-agreement price p∗∗ subject to disagreeing for two periods and

then returning to equilibrium. This disagreement point is implausible but useful: under

two-period commitment, the associated function p∗∗(x) would satisfy:

τ

1− τ
=

v1 (p
∗∗(x), x, 0, 1, 2)− β2E [v1(p

∗(x′′), x′′, 0, 1, 2) | x]
v2 (p∗∗(x), x, 0, 1, 2)− β2E [v2(p∗(x′′), x′′, 0, 1, 2) | x]

. (4)

The two-period-disagreement problem is much easier to solve, because vi(p, x, 0, 1, 2) =

ui(x) + βE[ui(x
′) | x] + (1 + β)(2i− 3)p+ β2E [vi(p

∗(x′′), x′′, 0, 1, 2) | x], yielding the finite-

horizon negotiation problem:

τ

1− τ
=

u1(x) + βE[u1(x
′) | x]− (1 + β)p∗(x)

u2(x) + βE[u2(x′) | x] + (1 + β)p∗(x)
,

which is the price the sides would negotiate if they formed a two-period agreement relative

to two-period disagreement in a two-period world. Beginning in the third period, outcomes

are the same under the agreement and hypothetical disagreement.

The equivalence of p∗ and p∗∗ is as follows. Write Gi(x) for the (possibly random) gains

from trade achieved by negotiation at state s. By Equation (3), G1(x) =
τ

1−τ
G2(x) for all x.
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Then, by expanding Equation (3) and applying the law of iterated expectations,

τ

1− τ
=

v1 (p
∗(x), x, 0, 1, 2) + β τ

1−τ
E [G2(x) | x]− β2E [v1(p

∗(x′′), x′′, 0, 1, 2) | x]
v2 (p∗(x), x, 0, 1, 2) + βE [G2(x) | x]− β2E [v2(p∗(x′′), x′′, 0, 1, 2) | x]

.

By simple algebra, this constraint is the same as if G2(x) = 0 deterministically, which yields

the two-period-disagreement problem Equation (4).

This is the step-by-step property in action. The step-by-step property is that the outcome

of bargaining in one shot is the same outcome as reaching a first-step agreement, updating the

disagreement point to the first-step agreement value, and then bargaining over any remaining

surplus. Imagine negotiating the price of a new car by first negotiating over the price, holding

any upgrades fixed; and then negotiating over price and upgrades, relative to the outcome of

the constrained bargain. The step-by-step property ensures that this process will generate the

same agreement as negotiating over the full surplus at once. Mathematically, if vD ∈ T ⊆ S,

then f(S, vD) = f(S, f(T, vD)). Kalai (1977) and Roth (1979) show that this property is

essentially unique to Kalai proportional bargaining, although it is difficult to state precisely

in the real world.

The step-by-step property is useful for simplifying recursive bargaining problems. In

many dynamic settings, a pair bargain relative to the value of agreeing next period under

a new bargaining state. This generates a complicated recursively defined bargaining prob-

lem. The one-disagreement bargain can be viewed as a first-step agreement relative to the

value of agreeing in two periods. Applying the step-by-step property to the gains gener-

ated by disagreeing for one period rather than two periods, the value of one disagreement

can be replaced by two, three, or infinitely-lived disagreement without changing the equilib-

rium agreement. The resulting simplification is qualitatively similar to finite dependence in

dynamic discrete choice (DDC) models (Arcidiacono and Miller, 2011).

Figure 2 illustrates the step-by-step property. Recall the intuition of the Kalai propor-

tional solution as choosing the best agreement along a surplus-splitting ray. In Figure 2(b),
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Figure 2: Left: Recall the Kalai proportional bargaining solution for choosing an agree-
ment V A

Kalai (blue) on a Pareto frontier PF relative to the value of disagreement vD (red),
with proportional split illustrated by dashed blue line. Right: illustrating the step-by-step
property for a final agreement V A

Step 2 (blue) recursively defined through bargaining relative
to a first-step agreement V D

Step 1 (red), chosen through applying the bargaining solution to
negotiations over some smaller Pareto frontier PF ′ (pink, with dashed line indicating gains)
relative to the full disagreement point vD (omitted).

instead of negotiating over the full agreement, the sides first negotiate over a smaller Pareto

frontier (pink) to reach a first-step agreement. The first-step agreement then becomes the

disagreement point in the second-step bargain over the full surplus, leading to a final agree-

ment. This generates the same outcome as bargaining over the full surplus Figure 2(a),

because the first-step agreement corresponds to moving the disagreement value upwards

along the same surplus-splitting ray.

I now leverage this property to replace the value of one-period disagreement on a T -

period contract with the value of T -period disagreement. This allows me to prove sufficient

identification conditions for recursive Kalai bargaining with multiperiod agreements over

uncertain and NTU Pareto frontiers.
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3.3 Identification of Kalai with Multiperiod Agreements

I provide two sufficient conditions for identification.

The first sufficient condition for identification is based on a remark by Rust (1994),

who writes that in dynamic discrete choice models with no observed components of utility,

some partial identification may come from “agents who make different choices in the same

state.” In recursive Kalai bargaining games, I show that this condition permits nonparametric

identification.

Proposition 4 (Identification without unobservables). Let B(T,1) be the set of b ∈ B(T ) such

that there are no unobserved components of utility (ε = 0) and the number of (p, x) combi-

nations observed is more than the number of values of x observed. Then under appropriate

rank conditions, all bargaining parameters are identified under B(T,1).

Proof. See Appendix A.2

This logic may enable identification in the presence of unobservables under an i.i.d.

restriction on the distribution of ε that I do not pursue.

The second sufficient condition is motivated by empirical practice, which tends to favor

GMM estimation. I show that an instrument satisfying an exclusion restriction can suffice

to identify the discounting rate.

Proposition 5 (Identification from inflation expectations). Suppose zt is a real-valued ob-

served coarsening of it satisfying an exclusion restriction {xt, εt}t0+T−1
t=t0 ⊥⊥ zt0 | xt0 , ϕt0, and

satisfying a relevance condition that for all δ > 0, E
[∏

t0<v≤t0+δ ϕv | xt0 , ϕt0 , zt0
]
is strictly

increasing in zt0. Suppose further that there is an xt0 , ϕt0 satisfying a non-zero condition

E
[
p∗t0 | xt0 , zt0 , {ϕt}t0+T−1

t=t0

]
> 0 for all zt0 , {ϕt}t0+T−1

t=t0 . Then under appropriate rank condi-

tions, all bargaining parameters are identified under B(T ).

Proof. See Appendix A.2.
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I view this second condition as more plausible in empirical use. The key restriction is that

zt affects bargaining only through expectations about inflation, and there is a clear direction

of prices so that inflation expectations affect starting prices. Empirical practice also can call

for interactions across negotiations by different players, which I add in the next section.

4 Multilateral Bargaining in a Multiperiod World

Now imagine that many agents negotiate staggered and interacting contracts in a chang-

ing and uncertain world. This will call for a model in which in every subgame, strategies

form a Nash equilibrium of the game defined by later behavior, and the contract formed by a

given pair always follows from applying a pair-specific bargaining solution to expected value

functions at the current state of the world. The arguments above in more restricted two-

agent games argue for applying recursive Kalai proportional bargaining. I call the associated

models Nash-in-Kalai models.

4.1 Model Timing

I study dynamic markets of the following form.

Time is indexed by t. One unit of time is divided into m ≥ 1 periods, with the time of

period s written as ts: t1 = 0, t2 = 1/m, t1+m = 1, and so on. The per-period discounting

rate is equal to β1/m ∈ [0, 1), with myopia corresponding to β = 0.

The timing in each period ts is as follows:

1. Information is revealed and non-bargaining choices are made. Information Its is re-

vealed, possibly through multiple sub-periods. The resulting information includes the

history of the game, period pre-transfer utility functions utsi(Cts), period demand func-

tions Dts,ij(Cts), null contracts C0,ijts , the set of feasible bilateral contracting states

Cijts (either a single renewal contract or a set including a null contract), and any in-

formation about future values. Every feasible contract ij includes pijts , the net i-to-j
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transfer per unit of equilibrium demand Dts,ij(Cts) provided in period ts.

2. Contracts are bargained. For i < j pairs with more than one feasible contract, new

contracts Ĉijts are chosen through bilateral Kalai proportional bargaining relative to

the null contract, with j receiving bargaining weight τij ∈ [0, 1]. I write the number of

new contracts formed by firm i as R̂its .

3. Flow profits are formed. Flow profits for agent i at contract state Ĉts with associated

j-to-i prices p̂ijts = −p̂jits and network of firms with agreements Gits are equal to

utsi(Ĉts) +
∑
j∈Gits

p̂ijtsDts,ij(Ĉts)− riR̂its ,

where ri ≥ 0 is the cost of validating a new contract.

Definition 7 (Nash-in-Kalai equilibrium). A Nash-in-Kalai equilibrium is a conditional ran-

dom variable distribution Its | (Its−1 ,Ct−1), a bilateral contract choice distribution Ĉts,ij(Its),

and recursive value functions Vi(I)(s) for various stages s such that (i) the value function

constraints in Appendix A.1 hold, (ii) all strategies are Markov strategies, (iii) any strategies

involved in the formation of Its in Stage 1 satisfy some appropriate concept of equilibrium

(typically Nash equilibrium), and (iv) for every ij and every subgame, the expected value of

Ĉts,ij(Its) | Its when taking other strategies as given solves the Kalai proportional bargaining

problem over value functions with bargaining weight τij ∈ [0, 1] on player j > i.

I call this the Nash-in-Kalai model because when the restrictions on strategies in Stage

1 include Nash equilibrium and the bargaining problem formed in Stage 2 satisfies Assump-

tion 1, then WPO ensures that any equilibrium forms a Nash equilibrium in recursively

defined Kalai proportional bargains. Due to the bilateral nature of contracting, I have not

found the recursive value functions to be useful beyond collecting terms. I present them in

Appendix A.1 for the interested reader.

I discuss each stage in further detail.
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4.1.1 Information is Revealed

The information updating Stage 1 is written in a generic way in order to accommodate

many types of markets.

Stages 1 and 3 can be modified to include separate games. The first stage can include

price-setting, contract renewal, or other strategic phases. The final stage can include demand

reallocation in response to upstream prices. I focus on the bargaining stage and abstract from

these strategic responses here. One could just as easily imagine strategic interactions after

bargaining rather than before bargaining. Such a change could be accommodated at the cost

of additional notation to track the outcome of the end-of-period response. I will eventually

imagine a period to be arbitrarily short, so that a single period is almost irrelevant. A more

substantive change would be if non-bargaining competition occurred at the same time as

bargaining in Stage 2. Such simultaneous competition would be insubstantial if it occurred

at discrete moments, but the step-by-step property would be less useful if strategic responses

are revisited at every moment in which a pair may attempt to negotiate.

4.1.2 Contracts are Bargained

The core of my analysis is the bargaining Stage 2.

I assume that a contract must have a price per unit of demand, which corresponds to

transfers in the scale of utility. Transferable utility corresponds to constant demand of one

unit. A contract can have other characteristics: a fixed end date or an auto-renew clause;

a benchmark rule for updating prices while the contract remains in place; or per-period

transfers as a function of each firm’s network of realized agreements (Olssen and Demirer,

2022; Ho and Lee, 2024). However, there is a meaningful restriction that flow profits depend

only on utility functions that are known at the start of the period, negotiation costs, realized

contracts, and predictable transfers.

I also assume that a pair chooses a contract taking as given both future strategies and

all strategies for other simultaneous actions. The assumption on future strategies is to my
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knowledge innocuous. The restriction on simultaneous strategies is the standard passive

beliefs assumption that if i or j defects and changes their behavior, neither party adjusts

their behavior in, or expectations about, other strategic decisions taken at the same time

(Lee et al., 2021). This decision is relatively innocuous in a dynamic market: I will have in

mind a model where the length of a period tends to zero, so that simultaneous bargains are

rare and typically have disagreement constraints implying an increasingly-small set.

4.1.3 Flow Profits are Formed

The representation of profits in Stage 3 as the sum of a pre-transfer flow profit function

and negotiated transfers generalizes many, but not all, conceivable dynamic markets.

I implicitly rule out transfers under null contracts. The Nash-in-Kalai model could be

extended to include disagreement transfers, for example through out-of-contract purchasing

(Prager and Tilipman, 2022), at the cost of yet more notation.

Note that Kalai proportional bargaining with extreme weights may not be defined if

the implied game fails comprehensiveness. For example, in traditional models of double

marginalization with negotiation of upstream supply before a retailer sets downstream prices,

the supplier’s preferred price may generate positive gains from trade for a downstream re-

tailer. In this case,the associated static game fails comprehensiveness. A corollary is that

sequential-pricing double marginalization models may not admit identification in settings

with possible uncertainty, and at a minimum will be complex to express.

I model a negotiation cost borne after bargaining succeeds. Real negotiation costs are

borne both at the stage of preparing for negotiations (Gooch, 2019; ECG, 2020; Fletcher,

2020; Beier, 2020) and at the stage of carefully checking the terms of a potential agreement

(STD TAC and Moss, 2014; PMMC, 2019; Fletcher, 2020). I model the bargaining friction

as only the ex post cost to validate a potential agreement. Some work includes a sunk

negotiation cost (Prager and Tilipman, 2022). Sunk costs can prevent firms from forming

Pareto-efficient contracts. In a static model, sunk costs have the advantage of not entering
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into payments. In a forward-looking model, future sunk costs enter into current payments

in a challenging way.

4.2 Expected Net Present Value Transfers Under Nash-in-Kalai

Bargaining

I now show that the dynamic Nash-in-Kalai model yields a moment on expected NPV

transfers that generalizes the static Nash-in-Nash moment on current transfers. The moment

delivers key tractability properties. In particular, shortening the length of disagreement does

not change the moment, so that a complex Nash-in-Kalai model defined in continuous time

can have the exact same predictions as a particular and more tractable model defined in

discrete time. The existence of a transfer moment and a tractable continuous-time foundation

for a discrete-time model are key advantages for empirical work.

I maintain some regularity conditions.

Assumption 5. (Regularity conditions)

Players are risk-neutral, share rational expectations, and follow Markov strategies. If ij

reach their null contract in ts and do not negotiate a new contract in ts+1 then ij reach their

null contract in ts+1. There is a uniform transversality condition: if Ftr|ts(Its) is the set of

feasible information sets in period tr ≥ ts after information Its is reached in period ts, then

lim
h→∞

sup
Its

sup
Its+h

∈Fts+h|ts (Its )
sup
i

βh/m
∣∣∣V (1)

i (I)(Its+h
)
∣∣∣ = 0.

By repeated application of the step-by-step property, the econometrician (and negotia-

tors) can replace the value of disagreement with the value of impasse. In the ij impasse

point, i and j continually attempt to reach an agreement, but surprise all actors and con-

tinue to disagree without abandoning negotiations. Under a fixed set of Markov strategies,

the impasse point is uniquely-defined regardless of whether disagreement is unilateral or

bilateral. The impasse point captures the dynamic intuition of static Nash-in-Nash disagree-
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ment: everyone behaves anticipating ij to reach an agreement, but ij always surprise the

market and disagree.

The impasse point is typically defined in discrete time, even when bargaining is conducted

in continuous time. In particular, the value of impasse only depends on ij bargaining states

through states at which others respond to an anticipated ij agreement. Most ij bargaining

states under impasse have no impact on the value of impasse, and so can be ignored for the

purposes of calculating the Nash-in-Kalai solution.

The dynamic Nash-in-Kalai bargaining model yields a moment on expected NPV trans-

fers, and as a result the econometrician can construct moments on transfers for estimation.

The moment naturally generalizes the static Nash-in-Nash bargaining moment to incorporate

multiple periods of gains from trade.

Theorem 2 (Nash-in-Kalai Moment). Consider a dynamic Nash-in-Kalai equilibrium that

satisfies Assumption 5. Suppose players i < j form a contract in a subgame time t0 that

remains in place through the (potentially random) terminal time t∗ with (potentially random)

realized prices p∗ijt. Then the expected NPV of realized transfers Dts,ijp
∗
ijts at the moment of

contract formation is equal to the sum of the expected NPV of Nash-in-Nash flow transfers,

a negotiation cost transfer, and an impasse repricing transfer term:

Et0

[ ∑
t0≤ts≤t∗

β
ts−t0

m Dts,ijp
∗
ijts

]
= PayNiN + PayNC + PayIRT , (5)

where the expected NPV of static Nash-in-Nash transfers (p̃ in Equation (2)) is:

PayNiN = Et0

 ∑
t0≤ts≤t∗

β
ts−t0

m

 −τij ([∆ijuits ] + [∆ijTits,−j])

+(1− τij) ([∆ijujts ] + [∆ijTjts,−i])


 , (6)

the negotiation cost transfer PayNC is equal to τijri − (1− τij)rj, and the impasse repricing
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transfer PayIRT is:

PayIRT = Et0

∑
ts≥t0

β
ts−t0

m

 −τij

(
π̂A
its + T̂A

its − π̂D
its − T̂D

its

)
+(1− τij)

(
π̂A
jts + T̂A

jts − π̂D
jts − T̂D

jts

)

 , (7)

where π̂A
ts,k

and T̂A
ts,k

correspond to the (potentially random) path of profits and net transfers

if ij enter their impasse point beginning in period t∗ + 1 and the ij equilibrium contract is

replaced with the ij null contract in periods t0 through t∗, and where π̂D
ts,k

and T̂D
ts,k

correspond

to those paths if ij enter their impasse point beginning in period t0.

Proof. The claim follows by repeated application of the step-by-step property. For details,

see Appendix A.2.

In many empirical applications, the realized transfers Dts,ijp
∗
ijts can be observed, the

flow Nash-in-Nash transfers in PayNiN depend on estimable demand functions and a small

number of bargaining parameters, and PayNC depends on only a few parameters. In models

like Lee and Fong (2013) with inertia, the flow Nash-in-Nash payments may be more subtle.

The term PayIRT accounts for the fact that in future periods, the Nash-in-Nash disagree-

ment point differs from the Nash-in-Kalai impasse point. The static Nash-in-Nash gains

used in PayIRT are calculated relative to disagreement under the non-ij contracts formed

in equilibrium, while the Nash-in-Kalai gains are calculated relative to disagreement under

the non-ij contracts formed when continually expecting expecting ij to exit impasse. Under

myopia (β = 0) or single-period contracts, PayIRT is equal to zero. In the absence of nego-

tiation costs, under myopia (β = 0) or single-period contracts, Equation (5) reduces to the

TU Nash-in-Nash transfer −τiij ([∆ijuit0 ] + [∆ijTit0,−j]) + (1− τiij) ([∆ijujt0 ] + [∆ijTjt0,−i]).

Theorem 2 holds whether the market is in steady state, in a stationary equilibrium that is

vulnerable to change, or is nonstationary. When the market is in steady state, the predicted

transfer is especially simple.
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Corollary 1 (Steady state PayIRT is zero). Consider a Nash-in-Kalai equilibrium such that

profit functions and contracts Ĉt are constant in equilibrium, and the market in steady state

in the sense that any subgame of the equilibrium outcome, if a pair ij defects and disagrees

for one period, then profit functions and contracts return to the original equilibrium the next

period. Then in every bargain, PayIRT = 0.

Proof. The path of profit functions, contracts, and transfers in future periods are the same on

the immediate-agreement and one-period-disagreement paths, other than future negotiation

costs that will be split proportionally. Thus, PayIRT = 0.

Corollary 1 is particularly useful for analyzing theoretical markets. Real-world markets

are not in steady state, but so long as a market is close to steady state, Corollary 1 implies

that approximating PayIRT to zero will produce an approximately valid moment. This is

the strategy I follow in my empirical application.

5 Empirical Application

I apply the proposed empirical model to data on hospital–insurer bargaining from West

Virginia. I prove a high-level summary here. For more detail on the data and setting, see

Dorn (2025b). For more detail on the estimation procedure, see the companion paper Dorn

(2025a).

The main dataset is panel information on contract formation and expiration by hospital-

insurer-year from West Virginia between 2005 and 2015. I also have inpatient data on visits

by residence and age for leading insurers. The model is a dynamic extension of the Ho and

Lee (2017) model: hospitals agree to receive reduced payments in exchange for an insurer

steering enrollees to the hospital; wider networks make insurance plans a higher-quality good

when selling to consumers; and some consumers become sick and need care at a hospital. I

focus on inpatient care. I assume that all sick patients receive care somewhere and always
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choose a provider within their insurer’s network. I differentiate between a set of medium

and large insurers that are modeled, and a tail of “nonmodeled” insurers.

There are known to be contracting externalities in this setting. Imagine a simple single-

period world with one monopolist insurer and two hospitals. The insurer simultaneously

sets premiums ϕ and negotiates with the two hospitals over a price per unit of care. After

premiums are set, consumers choose insurance. Consumers all become sick, and then flip a

fair coin to learn their preferred hospital. Consumers go to their preferred hospital if possible,

the other hospital if impossible, and do not purchase insurance if the network is empty. When

bargaining with hospital 2, the insurer knows that part of the value of the hospital is diverting

patients away from hospital 1. As a result, a higher anticipated hospital-1 price leads to a

higher hospital-2 price, generating contracting externalities. These contracting externalities

have been modeled through anticipated simultaneous agreements, yielding the TU Ho and

Lee (2017) model that I build on.

When contracts are staggered and negotiators are forward-looking, contracting external-

ities are internalized. Imagine that hospital 1 and hospital 2 bargain in alternating periods.

When the insurer negotiates with hospital 1, they know that their negotiated price will have

a positive effect on the price they negotiate with hospital 2 in the next period. These effects

are asymmetric, yielding a NTU model and all of the issues of the previous sections.

Real-world contracts are meaningfully staggered. Figure 3, borrowed from the companion

paper Dorn (2025a), shows that for both fixed-length contracts associated with larger insurers

and auto-renew contracts associated with smaller insurers, contracts consistently remained

in place for three years or longer. Many contracts remained in place for a decade or more.

Different lengths imply some degree of staggering. Appendix Figure 4 shows that contracts

would be staggered even within a given year. As a result, if negotiators are forward-looking,

the bargaining model will be NTU.

I estimate a Nash-in-Kalai model, leveraging Theorem 2 for estimation. Dorn (2025b) and

Dorn (2025a) show that hospitals and insurers had predictably different variation in contract
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Figure 3: Contracts are multiyear. Distribution of reported contract lengths for fixed-term
contracts in general (left panel) and auto-renew contracts with reported formation dates
as-of fiscal 2015 (right panel). Colors indicates insurer. The two nonmodeled contracts
correspond to Wheeling–Pittsburgh Steel.

lengths and payment rates, so I use insurer and hospital-size-group indicator variables as

instruments based on Proposition 5. I model bargaining weights as featuring an interaction

of insurer j and hospital i effects:

log

(
τij

1− τij

)
= δj + τSize log(Sizei),

where δj is an insurer fixed effect, τSize is a hospital-size coefficient, and Sizei is a measure

of hospital system size from the start of the dataset. I estimate hospital demand based

on Highmark BCBS patients, who are in-network at every hospital, and estimate insurer

demand as a function of network quality using institutional features of premium-setting. For

more details on estimation, see the companion paper Dorn (2025a).

I estimate three bargaining models. The Only-2015 model represents estimates based on

the standard approach of taking all data in a market over a short period and estimating a

Nash-in-Nash model treating all contracts as short-lived. This model is TU, so the Only-
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2015 model can be interpreted as a Nash-in-Kalai model. The Myopic model uses the same

demand estimates, but estimates bargaining parameters for new contracts in all years. By the

arguments of Section 2, myopia is needed to identify a Nash-in-Nash model with staggered

contracts. Estimates under myopia can also be interpreted as Nash-in-Nash or Nash-in-Kalai.

Finally, the Forward-Looking model uses the same bargains and estimated demand functions

as the Myopic model, but allows for negotiators to be forward-looking under specifically the

Nash-in-Kalai model.

Parameter

β τBCBS τHPUOV τFP −τSize

Only-2015 · 0.487** -7.54 0.694*** 3.354
(Nash/Kalai) (·) (0.191) (17.204) (0.175) (22.875)

Myopic · 0.876*** 0.825*** 0.861*** 1.037***
(Nash/Kalai) (·) (0.012) (0.232) (0.034) (0.199)

Forward-Looking 0.899*** 0.854*** 0.877*** 0.889*** 0.989***
(PayIRT = 0) (0.03) (0.006) (0.026) (0.005) (0.028)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Estimated bargaining and patience weights for the only-2015 (first row), myopic
(second row), and preferred forward-looking (third row) bargaining models. The MCO τj
bargaining weights represent the estimated bilateral share τij evaluated for a hospital i
with size equal to the average bargain value, and include estimated heterogeneity between
Highmark BCBS (BCBS), the regional insurer HPUOV, and the modeled for-profit insurers
(FP). The estimated forward-looking model overwhelmingly rejects myopia, and the only-
2015 model produces implausible estimated bargaining weights. For additional parameter
estimates, see Appendix Table 2.

The estimated bargaining parameters are in Table 1. The length data in Figure 3 rejects

a static model like the Only-2015 model, and I find that treating old contracts as recently-

formed is substantive. In this case, the only-2015 model estimates that the regional insurer

HPUOV’s bargaining weight is negative. This behavior is in part driven by the large esti-

mated role of hospital size, which is associated with contract structure: if I fix τSize = 0, the

estimated bargaining weights for Highmark BCBS, HPUOV, and the other for-profit insurers
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drops to 0.365, 0.278, and 0.16, respectively. These numbers are interior, but mistakenly

estimate very small bargaining weights for for-profit insurers.

Next, I turn to the Myopic and Forward-Looking models with accurate timing. These

models predict limited heterogeneity in insurer bargaining weights, but important hetero-

geneity in hospital bargaining weights. The bargaining weights are similar whether β is

allowed to be above zero or not, because demand is fairly correlated across time. Nev-

ertheless, the forward-looking model overwhelmingly rejects the null hypothesis of myopia,

estimating an (inflation-adjusted) annual discounting rate of 0.899. This parameter estimate

indicates that the negotiators are likely to respond to beliefs about future conditions when

choosing their starting price, indicating that there can be important dynamic incentives that

the previous static literature could not model.

6 Conclusion

This paper introduces the Nash-in-Kalai solution for bargaining problems with nontrans-

ferable utility. In the presence of uncertainty over nontransferable Pareto frontiers, Nash

bargaining and other scale-invariant bargaining solutions are unidentified, and only one fam-

ily of bargaining solutions satisfying independence of irrelevant alternatives is identified: The

Kalai proportional bargaining solution. The Kalai proportional solution’s unique step-by-

step property implies a valuable equivalent representation of the recursive Kalai proportional

bargaining problem. I leverage this representation to provide sufficient conditions for iden-

tification of Nash-in-Kalai bargaining parameters with multiperiod agreements. The Nash-

in-Kalai model admits a moment on expected NPV transfers in a wide degree of generality.

As a result, the model can be applied to settings with many firms negotiating interacting

agreements at different times.

My empirical analysis leverages a panel dataset that includes hospital–insurer contract

timing to study one setting with staggered contract negotiations. Hospital–insurer con-
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tracting in West Virginia was meaningfully staggered, so that forward-looking bargaining

is nontransferable utility. I estimate an empirical model generalizes the Ho and Lee (2017)

static TU model to include NTU dynamics from staggered contract formation. I find that a

static model with an inaccurate conjecture of timing would yield a misleading understand-

ing of bargaining weights. I compare two estimators with accurate timing: a model that

imposes myopia to achieve feasibility of non-Kalai models, and a Nash-in-Kalai model that

allows negotiators to be forward-looking. I find that accurate timing, but not accurate time

preferences, are important for accurately capturing bargaining weights. However, the esti-

mated discounting rate is far from zero, indicating that negotiators meaningfully respond to

forward-looking incentives that the previous literature could not capture.

The Nash-in-Kalai model is likely to be valuable beyond healthcare. The framework may

prove useful for modeling media asset acquisition (Morrissette, 2023), programming disputes

with time-bound programming (Hayes, 2023), disagreement with inertia costs (Handel, 2013),

staggered team formation in the presence of aggregate wage limits (Mulholland and Jensen,

2019), and supply chain bargaining in the presence of inflation (Davidson, 1988; Baudendis-

tel, 2023). A feasible, but non-trivial, addition for future work is to extend popular empirical

search-on-the-job models (Cahuc et al., 2006; Bagger et al., 2014; Bilal et al., 2022) beyond

TU bargaining. The dynamic moment of Theorem 2 provides sufficient conditions for esti-

mation, but an important avenue for future work is characterizing plausible conditions for

statistical inference in this setting. Finally, an open question for future work is whether com-

putational tools can render a feasible Nash-in-Nash model with staggered contracts when

the econometrician is willing to take a stance on information timing.
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A Additional Content

A.1 Dynamic Value Functions

I begin with the recursively-defined expected value function.

Formalizing the expected NPV profit in bargaining requires notation for the future equi-

librium. Fix a period ts in which ij have multiple feasible contracts. By assumption, the

null contract C0,ijts is also feasible. I will assume that strategies are Markov, so that future

conditions can evolve based on the contracts realized today but not whether a null contract

was reached through agreement or disagreement. Define utr|ts(Ctr | Cts) to be the (poten-

tially random) profit function that will occur in period tr with realized agreements Cts this
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period. Similarly define Dtr|ts(Ctr | Cts) for the demand functions. Also define Its(Cts) to

be the realized information, C0,kℓtr|ts(Cts) to be the realized null contracts for kℓ in period

tr, Ckℓtr|ts(Cts) for the set of feasible contracts, and Ĉtr|ts(Cts) for the equilibrium contracts.

Define the period ts ij substitution function as
(
Ĉtr,−ij|ts ,Cts,ij

)
, which replaces the ij ele-

ment of the equilibrium contract Ĉts with Ĉts,−ij. I then extend this contract replacement

to periods tr > ts by defining
(
Ĉtr,−ij|ts(Cts,ij),Ctr,ij

)
to be the contract which replaces the

ij element of Ĉtr|ts

(
Ĉtr,−ij|ts(Cts,ij),Ctr,ij

)
with the arbitrary Ctr,ij.

I will now define the value function of ij agreeing to a contract Cts,ij in Stage 2 of period

ts. The value function will depend in large part on the one-period-ahead value of beginning

with a modified information state. The ex ante expected value to agent i of beginning the

period ts with information Its with (potentially random) realized contracts Ĉts(Its), number

of new contracts R̂i(Its), and otherwise equilibrium response functions of that form is:

V
(1)
i (Its) = EIts

[
uits

(
Ĉts(Its)

)
+
∑
j ̸=i

p̂ijts(Its)Dts,ij

(
Ĉts(Its)

)
− riR̂i(Its) + β

1
mV

(1)
i (Its+1)

]
.

Also define R̂ijts as an indicator for ij forming a new contract in ts, and B̂ijts ≥ R̂ijts to be

an indicator ij having the opportunity to bargain in a period ts. Then the ex post expected

value of i < j choosing a contract Cts,ij ∈ Cijts/C0,ijts with implicit information Its and

associated price pijts , including the negotiation cost, is:

V
(2,A)
i|ijts

(
Cts,ij | Ĉts,−ij|ts

)
= Ets.2

[
uits

((
Ĉts,−ij|ts ,Cts,ij

))
− ri(R̂its − R̂ijts − ri)

]
+ Ets.2

[∑
k ̸=i

piktsDts,ij

((
Ĉts,−ij|ts ,Cts,ij

))]

+ β
1
mEts.2

[
V

(1)
i

(
Its+1

((
Ĉts,−ij|ts ,Cts,ij

)))]
.

The value to j > i is similar, but with reindexing as needed. The value of ij disagreeing is:

V
(2,D)
i|ijts

(
Ĉts,−ij|ts

)
= Ets.2

[
uits

((
Ĉts,−ij|ts ,C0,ijts

))
− ri(R̂its − R̂ijts)

]
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+ Ets.2

[∑
k ̸=i,j

piktsDts,ij

((
Ĉts,−ij|ts ,C0,ijts

))]

+ β
1
mEts.2

[
V

(1)
i

(
Its+1

((
Ĉts,−ij|ts ,C0,ijts

)))]
.

Given these ex post value functions, I recursively define the ex ante value function for i in

terms of the ij contract outcome. The three possibilities are renewing at equilibrium contract

Ĉts,−ij|ts (B̂ijts = 0), successfully negotiating the (potentially random) equilibrium contract

Ĉts,−ij|ts (B̂ijts = R̂ijts = 1), and disagreeing to the null contract Ĉ0,ijts (B̂ijts = 1, R̂ijts = 0).

As a result, the ex ante expected NPV profit can be written as:

V
(1)
i (Its) = EIts

[
(1− B̂ijts(1− R̂ijts))V

(2,A)
i|ijts

(
Ĉts,ij | Ĉts,−ij|ts

)
+ (1− B̂ijts)ri

]
+ EIts

[
B̂ijts(1− R̂ijts)(1− R̂ijts)V

(2,D)
i|ijts

(
Ĉts,−ij|ts

)]
.

A.2 Additional Proofs

Proof of Lemma 3. For this proof, let G be the set of games (S, vD) satisfying Assumption 1,

vD = 0, and S = {s ∈ S : s ≥ 0}. I write that the game ({0}, 0) ∈ G, with f({0}, 0) = 0 for

any bargaining solution f .

I prove the weaker claim that if f satisfies WPO, IIA, and concavity for games in G, then

either f is proportional or f it utilitarian.

The proof generally follows Myerson (1981), so I proceed assuming the reader has a copy

on hand. Let G be the set of games that satisfy Assumption 1 and do not allow ex post

losses, and let f be a bargaining solution that satisfies WPO, IIA, and this proof’s weaker

form of concavity. Myerson’s Theorem 1 shows that because G is a convex combination, if f

is linear, then f is utilitarian.

Most of Myerson’s results follow after some change in notation. His Lemma 1 through

Lemma 6 follow after adjusting the notion of comprehensive convex hull to intersect with

R2
+, and writing M = {f(G) : G ∈ G}. Lemma 7 follows after adding a caveat that the
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claim only holds if z = λx(1− λ)y ≥ 0, and with some care verify the claim holds for y = 0.

Myerson’s Lemma 8 requires more modification. Because f is not utilitarian, it continu-

ous to be the case that there is a v, u = f(v) such that p · v > p · u, where p is constructed

in Myerson’s Lemma 4. Then by Myerson’s Lemma 7, take λ = 1
∥u∥ and mix the game

H(v) with zero to obtain a game, with associated solution c satisfying ∥c∥ = 1. Without

loss of generality I write that u = c. Then it clear by inspection that u − c ∈ M , because

f({0}, 0) = 0 = u− c.

Myerson’s Lemmas 9 and 10 follow immediately. Lemma 11 follows with the caveat that

the claim only holds if u + λd ≥ 0. Myerson’s Lemma 12 completes the proof by showing

that if x ∈ M , then x = u + (pẋ− pu̇)u, which holds so long as u + (pẋ− pu̇)u ≥ 0. But

by construction in this extension, pu̇ = 1, so that the only requirement is that pẋ ≥ 0. But

x ∈ M , so there is an 0 such that x = F (S, 0), and 0 ∈ M ∩S, so that by Myerson’s Lemma

5, pẋ ≥ p0̇ = 0. Therefore u+ (p · x− p · u)u ≥ 0, so that the result of Myerson’s Lemma 12

holds and if f is not utilitarian, then f is proportional.

Proof of Lemma 2. f3 is not concave, so there exists an S, T, λ such that at least one player

strictly prefers λf3(S, v
D)+(1−λ)f3(T, u

D) to f3(λS+(1−λ)T, λvD+(1−λ)uD). By strict

inequality, it must be that λ ∈ (0, 1).

Without loss of generality, assume player 1 strictly prefers the ex post game. By

WPO of the ex ante solution, player 2 weakly prefers the ex ante game. Write vEA =

f
(
λS + (1− λ)T, λvD + (1− λ)uD

)
, s∗ = f3(S, v

D), and t∗ = f3(T, u
D), then vEA,1 <

λs∗1 + (1− λ)t∗1 and vEA,2 ≥ λs∗2 + (1− λ)t∗2.

Let s′, t′ be points in S, T such that s′ ≥ vD, t′ ≥ uD, s′1 ≥ s∗1, s
′
2 ≤ s∗2, t

′
1 ≥ s∗1, t

′
2 ≤ t∗2,

and λs′ + (1− λ)t′ = vEA. Such a point must exist because vEA ∈ λS + (1− λ)T .

Now let S ′ be the comprehensive convex hull of s′, s∗, and vD, and let T ′ be the com-

prehensive convex hull of t′, t∗, and uD. The Pareto frontier of λS ′ + (1− λ)T ′ is the convex

hull of λs′ + (1 − λ)t′ and λs∗ + (1 − λ)t∗. Let R = 1 correspond to playing S ′ and let

R = 0 correspond to playing T ′. Also let the utility functions u corresponding to mapping
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p ∈ [0, 1] to points on the utility frontier, with p = 1/3 corresponding to s′ and t′ and p = 2/3

corresponding to s∗ and p∗. (Note that it is possible for the frontier of utility to be a single

point in one of these games.) Also let P be the singleton distribution of Bernoulli(λ).

By constraint of Lemma 2, there exists an f ′ such that f ′(λS ′ + (1 − λ)T ′, λvD + (1 −

λ)uD) = λs′ + (1− λ)t′. Let b be a structure generated by EA = 0 bargaining under f , and

let b′ be a structure generated by EA = 1 bargaining under f ′. Any equilibrium results in

setting p∗ = 1/3, so that b ⇔ b′. But f predicts setting p∗ = 2/3 in the ex ante game, so

that f ⇎ f ′. Thus, F is not single-period identified.

Proof of Proposition 4. By applying the step-by-step property T times and then canceling

future (exogenously evolving) states, every (p, x) combination observed in a period t0 must

satisfy:

E

[
T−1∑
t=0

βt
∏

0<h≤t

(1 + ϕt0+h) | xt0 , ϕt0

]
p = E

[
T−1∑
t=0

βtp̃(xt0+t) | xt0 , ϕt0

]
.

Let x contain at least two prices, p∗1 and p∗2. Then, by iterated expectations:

∑T−1
t=0 βtE

[∏
0<h≤t (1 + ϕt0+h) | xt0 , ϕt0 , p

∗ = p∗1
]
p∗1∑T−1

t=0 βtE
[∏

0<h≤t (1 + ϕt0+h) | xt0 , ϕt0 , p
∗ = p∗2

]
p∗2

=
E
[∑T−1

t=0 βtp̃(xt0+t) | xt0 , ϕt0 , p
∗ = p∗1

]
E
[∑T−1

t=0 βtp̃(xt0+t) | xt0 , ϕt0 , p
∗ = p∗1

] .
This plus the constraints E

[∑T−1
t=0 βt

∏
0<h≤t (1 + ϕt0+h) p

∗
t0
| x
]
= E

[∑T−1
t=0 βtp̃t(x) | x

]
pro-

vides dim(x) + 1 constraints for dim(x) + 1 parameters. Therefore, under appropriate rank

conditions, all bargaining parameters are satisfied.

Proof of Proposition 5. By Proposition 2, all bargaining parameters are identified if T = 1,

so I proceed assuming T > 1.

Consider the distribution in new-contract periods t0. Condition on a pair of xt0 , ϕt0 from

the sign constraint in the statement of Proposition 5. By applying the step-by-step property

T times, canceling future (exogenously evolving) states, and applying iterated expectations,
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the must satisfy:

E

[
t0+T−1∑
t=t0

βt−t0

( ∏
t0<v≤t

ϕv

)
p∗t0 | xt0 , ϕt0 , zt0

]
= E

[
t0+T−1∑
t=t0

βt−t0 p̃(xt) | xt0 , ϕt0 , zt0

]

= E

[
t0+T−1∑
t=t0

βt−t0 p̃(xt) | xt0 , ϕt0 | xt0 , ϕt0

]
= “C.”

Thus:

C = E

[(
t0+T−1∑
t=t0

βt−t0

( ∏
t0<v≤t

ϕv

))
p∗t0 | xt0 , ϕt0 , zt0

]
.

Subtraction between two levels of zt0 yields identification of β.

Proof of Theorem 2. Consider a period t0’s Stage 2 subgame in which i < j form a new con-

tract with positive probability. For simplicity, I proceed assuming there is a pure strategies

equilibrium, and that in every subgame that can be reached after t0, the expected number

of subsequent ij agreements is infinite.3 Also for simplicity, assume that a realized contract

Cts,ij will be unchanged until the next period in which ij have the opportunity to negotiate.

I write the anticipated non-ij contracts in period ts as Cts,−ij.

I consider two off-equilibrium paths: an agreement-followed-by-impasse path (super-

scripted A), and an immediate-impasse path (superscripted D). I write tA0 = tD0 = t0,

and I write tAa and tDa for the (potentially random) ath future period in which ij defect from

equilibrium and reach the null contract on that path.

For d ≥ 0, define V
(2,E)

k,(d)D
to be the (potentially random) expected NPV to player k of ij

existing impasse in period tDd at the other-pair subgame equilibrium contracts ĈtDd ,−ij. Let

the subgame equilibrium have ij choose ĈtDd ,ij. Also define V
(2,I)

k,(d)D
to be the expected NPV

of remaining in impasse, and define GFT
(2,E)

(d)D
≡ V

(2,E)

i,(d)D
+ V

(2,E)

j,(d)D
− V

(2,I)

i,(d)D
− V

(2,I)
j,d to be the

joint subgame gains from trade. Because ij follow the Kalai proportional solution, ĈtDd ,ij is

3In estimation, it is infeasible to include an infinite number of bargains without imposing strong assump-
tions like steady state behavior. I therefore impose a finite horizon model in estimation as an approximation
to an infinite-horizon model.
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chosen to maximize joint gains from trade subject to:

(τij)
(
V

(2,E)

i,(d)D

((
ĈtDd ,−ij, ĈtDd ,ij

))
− V

(2,I)

i,(d)D

)
= (1− τij)

(
V

(2,D)
j,d

((
ĈtDd ,−ij, ĈtDd ,ij

))
− V

(2,I)
j,d

)
.

Then:

V
(2,I)

i,(d)D
= EtDd

 ∑
tDd ≤ts<tDd+1

β
ts−tDd

m

(
π̂D
its + T̂D

its

)
+ β

tDd+1−tDd
m V

(2,E)

i,(d+1)D

((
ĈtDd+1,−ij, ĈtDd+1,ij

))
= EtDd

 ∑
tDd ≤ts<tDd+1

β
ts−tDd

m

(
π̂D
its + T̂D

its

)
+ β

tDd+1−tDd
m

(
V

(2,I)

i,(d+1)D
+ (1− τij)GFT

(2,E)

(d+1)D

)
= EtDd

∑
ts≥tDd

β
ts−tDd

m

(
π̂D
its + T̂D

its

)
+
∑
h>0

(1− τij)β
tDd+h−tDd

m GFT
(2,E)

(d+h)D
+ lim

h→∞
β

tDd+h−tDd
m V

(2,I)

i,(d+h)D


= EtDd

∑
ts≥tDd

β
ts−tDd

m

(
π̂D
its + T̂D

its

)
+
∑
h>0

(1− τij)β
tDd+h−tDd

m GFT
(2,E)

(d+h)D

 ,

(8)

where the final line uses limh→∞ β
tDd+h−tDd

m V
(2,I)

i,(d+h)D
= 0 under transversality conditions.

I iteratively expand using Equation (8) and obtain:

V
(2,I)

i,(d)D
= EtDd

∑
ts≥tDd

β
ts−tDd

m

(
π̂D
its + T̂D

its

)
+
∑
h>0

(1− τij)β
tDd+h−tDd

m GFT
(2,E)

(d+h)D


V

(2,I)

j,(d)D
= EtDd

∑
ts≥tDd

β
ts−tDd

m

(
π̂D
jts + T̂D

jts

)
+
∑
h>0

(τij)β
tDd+h−tDd

m GFT
(2,E)

(d+h)D

 .

Analogous results hold to characterize V
(2,I)

i,(d)A
= V

(2,E)

i,(d)D

((
ĈtDd ,−ij, ĈtDd ,ij

))
and V

(2,I)

j,(d)A
=

V
(2,E)

j,(d)D

((
ĈtDd ,−ij, ĈtDd ,ij

))
, except that in periods t0 through (tA1 − 1), ij have a contract

on the A path, so that ij profits are π̂A + T̂A + [∆ijπ] + [∆ijT−·] + pDijt instead of π̂A + T̂A

and ij pay an additional negotiation cost in period t0.

Substituting these results together, characterizing the surplus split of the t0 = tD0 = tA0

49



bargain, and moving around terms, I obtain that for any equilibrium agreement:

Et0

 ∑
t0≤ts<tAq

β
ts−t0

m p∗ijtsDijts

 = Et0

 ∑
t0≤ts<tAq

β
ts−t0

m

 −τij ([∆ijuits ] + [∆ijTits,−j ])

+(1− τij) ([∆ijujts ] + [∆ijTjts,−i])




+ (τijri − (1− τij)rj)

+ Et0

∑
t0≤ts

β
ts−t0

m

 −(τij)
(
π̂A
its

+ T̂A
its

− π̂D
its

+ T̂D
its

)
+(1− τij)

(
π̂A
jts

+ T̂A
jts

− π̂D
jts

+ T̂D
jts

]
)



= PayNiN + PayNC + PayIRT ,

which is the desired equality.
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A.3 Tables and Figures
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Figure 4: Contracts are formed at different times. Histogram of contract start dates for
contracts used in the estimation sample and introduced in 2007–2014 for Highmark BCBS
(blue) and other modeled insurers (pink). Vertical lines indicate January 1 of a given year.
Contracts were not systematically introduced on the same dates.

Table 2: Additional estimated bargaining parameters. BCBS parameters correspond to
Highmark BCBS. “Data” corresponds to average difference between MLR-implied costs per
life and estimated average inpatient payments per life insured, and would exactly set the
MLR moment to zero for the myopic and forward-looking models. The rM net negotiation
costs are close to their starting point of $10,000 and may weakly identified or unidentified.

Parameter (τSize Estimated)

ηBCBS ηHPUOV ηAetna ηUnitedHealth ηCigna ηCarelink rMyBCBS rMnBCBS

Only-2015 3657*** 3404*** 3658*** 2008*** 4627*** 3139*** 10000*** 9999***
(Nash/Kalai) (45) (85) (116) (29) (32) (39) (2614) (1441)

Myopic 4640*** 4036*** 3659*** 3197*** 4624*** 3139*** 10000*** 10000***
(Nash/Kalai) (14) (650) (37) (374) (26) (463) (1444) (1)

Forward-Looking 4638*** 3631*** 3660*** 3284*** 4626*** 3140*** 9999*** 9999***
(PayIRT = 0) (130) (302) (37) (69) (30) (45) (29) (65)

Data 3600 3356 3554 1999 4635 3114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

51


	Introduction
	Starting Point: Bilateral Bargaining in a Single-Period World
	What is Kalai Proportional Bargaining?
	Why is Kalai Bargaining Only Sometimes the Same as Nash Bargaining?
	Why is an Alternative to Nash Bargaining Needed?
	Why is Kalai Proportional Bargaining the Right Alternative for Dynamic Games?

	Bilateral Bargaining in a Multiperiod World
	The Multiperiod Kalai Model is Only Identified with Single-Period Agreements
	The Step-by-Step Property for Recursive Bargaining
	Identification of Kalai with Multiperiod Agreements

	Multilateral Bargaining in a Multiperiod World
	Model Timing
	Information is Revealed
	Contracts are Bargained
	Flow Profits are Formed

	Expected Net Present Value Transfers Under Nash-in-Kalai Bargaining

	Empirical Application
	Conclusion
	Additional Content
	Dynamic Value Functions
	Additional Proofs
	Tables and Figures


