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Problem Setup: Treatment Effects Under Weak Overlap

Goal: estimate treatment effects

Focus on APO ψ0 = E [E [Y | X ,D = 1]] = E [µ(X , 1)] for ease

Setup: Outcomes Y , controls X , treatment D, propensity e(X ) = E [D | X ]

Usual assumption: strict overlap infx e(x) > 0, or at least E [1/e(X )] exists

This paper: what if strict overlap fails?
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Paper’s Focus: (Augmented) Inverse Propensity Estimators

Key estimators are Inverse Propensity Weighting and Augmented IPW

ψ̂(IPW ) =
1

n

n∑
i=1

DiYi

ê(Xi )
, ψ̂(AIPW ) =

1

n

n∑
i=1

µ̂(Xi , 1) +
Di (Yi − µ̂(Xi , 1))

ê(Xi )

E
[
DY
ê | X

]
= µ(X , 1)e(X )/ê(X ) ≈ µ(X , 1)

E
[
µ̂+ D Y−µ̂

ê | X
]
= µ(X , 1) + (µ− µ̂) e−ê

ê ≈ µ(X , 1)

Under strict overlap, Wald ψ̂ ± 1.96 ŜE CIs cover with Prob → 95%

Under weak overlap, both estimators nearly divide by zero
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Under Weak Overlap, Usual Asymptotics Fail
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Figure: Weak overlap simulation (described later): IPW/AIPW t-statistics are far from N (0, 1)
(dashed line). Under weak overlap, (A)IPW is consistent but not asymptotically Gaussian.
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Existing Literature for Weak Overlap

Theory: target standard ψ0 with nonstandard estimators

New estimators like using E [DY | e(X )] (Chaudhuri and Hill, 2016; Ma and Wang, 2020; Sasaki and Ura, 2022)

Confidence intervals like self-normalized subsampling (Ma and Wang, 2020; Heiler and Kazak, 2021)

Practice: nonstandard estimands by weighting, trimming, or clipping
Crump et al. (2009); Yang and Ding (2018); Li et al. (2018); Ma and Wang (2020), ...

ψ̂(IPW )(bn) =
1

n

n∑
i=1

DiYi

max{ê(Xi ), bn}
, ψ̂(AIPW )(bn) =

1

n

n∑
i=1

µ̂(Xi , 1) +
Di (Yi − µ̂(Xi , 1))

max{ê(Xi ), bn}
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This Paper

Under clipped AIPW with the right rates,
then standard ψ̂ ± 1.96ŜE CIs cover the

target ψ0 even under weak overlap
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Intuition for Asymptotic Normality

Ma and Wang (2020): clipped IPW →d N (·, ·), but bias even if e known

Standard arguments: AIPW debiases ê propensity error with µ̂

Key insight: AIPW also debiases e clipping with µ̂

But what debiases µ̂ with clipping?

Clipping → 0
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Contributions

Inference under weak overlap Khan and Tamer (2010); Ma and Wang (2020); Ma et al. (2023), ...

Uniform coverage of Wald µ̂± 1.96ŜE CIs using standard clipped AIPW

Clipped AIPW is NOT the optimal estimator — dominated by smarter things

Two useful tricks for nonstandard estimands similar ideas in e.g. Semenova (2024)

Neyman orthogonal debiasing can apply to shifts away from ID failure

Points very near ID failure cannot be too common under margin conditions

Regression with degenerate designs Hall et al. (1997); Gäıffas (2005); Pathak et al. (2023), some others

New results for local polynomial regression under weak overlap

Should this be a different paper(s)??
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Today’s Talk

1. Clipped AIPW asymptotics: main result + proof overview

2. Achieving regression rates under weak overlap

3. Simulations
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Setting the Stage: Usual Strict Overlap Framework

Usual strict overlap assumptions

Propensity scores bounded away from 0 and 1

Cross-fitting estimates of nuisances µ̂, ê (will maintain)

Product of errors ∥ê − e∥P,2 = OP(re), ∥µ̂− µ∥P,2 = OP(rµ), and re ∗ rµ = o(n−1/2)

Then t-statistics are well-calibrated: ψ̂
AIPW−ψ0

σ̂ →d N (0, 1)
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Starting Point for Weak Overlap: Ma and Wang (2020)

P(e(X ) ≤ π) ∼ πγ0−1

γ0 > 2: E [1/e(X )] exists and standard asymptotics hold

γ0 < 2: E [1/e(X )] = ∞ and IPW is not asymptotically normal even if e(X ) is known

γ0 ≤ 1: E [DY /e(X )] may not be identified

Heavy trimming (or clipping) ⇒ asymptotic normality with bias (Ma and Wang, 2020)
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I Consider a Uniform Family

Assumption 1
Observe data (X ,D,Y ) ∼ P ∈ P, where P requires regularity conditions
and P(e(X ) ≤ π) ≤ Cπγ0−1 for some fixed C > 0, γ0 > 1.

Uniform: overlap can be stronger or nonsmooth under P

I also use P(cts) for distributions that have “continuous” weak overlap
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Weak Overlap Will Require Stronger Rates

Sup-norms supx |η̂(x)− η(x)| = oP(rη) to ensure rates near e(x) = 0

Stronger rates needed on re , rµ too

Product of errors: rµre(1 + b
(γ0−2)/2
n ) = o(n−1/2) (b

(γ0−2)/2
n → ∞ for γ0 < 2)

Debiased µ̂: rµb
(γ0−2)∗2/γ0
n = o(n−1/2), though laxer if P ∈ P(cts)

Consistency (bn → 0) and asymp. known thresholding (re = o(bn))
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Main Result of the Paper: T-Statistics are Well-Calibrated

Theorem 1

Suppose n−1/2 ≪ bn ≪ 1 and the rate conditions above hold.
Then clipped AIPW t-statistics are well-calibrated under weak overlap:

lim sup
n→∞

sup
P∈P

sup
t∈R

∣∣∣∣∣Pn

(
ψ̂AIPW
clip (bn)− ψ(P)

σ̂n
≤ t

)
− Φ(t)

∣∣∣∣∣ = 0.
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Overview of Proof of T-Stat ψ̂(bn)−ψ
σ̂ →d N (0, 1)

1. Oracle CLT:
ψ̂(orcl)(bn)−ψ

σn
→d N (0, 1), where σn is oracle SE

2. Oracle equivalence:
ψ̂−ψ̂(orcl)

σn
→P 0

3. Standard error consistency: σ̂nσn →P 1 uniformly
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ψ̂(orcl)(bn)−ψ

σn
→d N (0, 1), where σn is oracle SE

Ma and Wang (2020):
ψ̂

(IPW )
(orcl) (bn)−ψ−θn

σn
→d N (0, 1)

Uniform CLT with Berry–Esseen Theorem

ψ̂
(AIPW )
(orcl) (bn)−ψ

σn
→d N (0, 1) by A of AIPW

Convergence rate may be σ2
n ∼ n−1bγ0−3

n
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σ̂ →d N (0, 1)

1. Oracle CLT:
ψ̂(orcl)(bn)−ψ

σn
→d N (0, 1), where σn is oracle SE

2. Oracle equivalence:
ψ̂−ψ̂(orcl)

σn
→P 0

Follows by the bias intuition from earlier + lots of algebra

Behavior driven by e(X ) ∈ [0, bn(1 + ϵ)]

3. Standard error consistency: σ̂nσn →P 1 uniformly
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Overview of Proof of T-Stat ψ̂(bn)−ψ
σ̂ →d N (0, 1)

1. Oracle CLT:
ψ̂(orcl)(bn)−ψ

σn
→d N (0, 1), where σn is oracle SE

2. Oracle equivalence:
ψ̂−ψ̂(orcl)

σn
→P 0

3. Standard error consistency: σ̂nσn →P 1 uniformly: easier!
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Interpreting Rate Requirements (P ∈ P(Cts))

γ0 > 2 (strict overlap): usual rates basically enough

For fixed γ0 > 1, bn → 0 exists if...

rµ, re = o(n−1/3) OR

re = O(n−1/2) and rµ = o
(
n−1/4

)
OR

re = o(1) and rµ = O(n−1/2)

A “curse of weak overlap” if µ̂ is nonparametric: rµ ∗ re = o(n−1/2) not enough

Intuition: If rµ is parametric, we are done, but if re is parametric, still need to debias µ̂
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But Can Those Rates Be Achieved?

Need stronger rates for ê(X ) and µ̂(X , 1) for P(D = 1 | X ) ≈ 0

AND weak overlap makes µ̂(X , 1) harder for P(D = 1 | X ) ≈ 0

Can we estimate E [Y | X ,D = 1] when P(D = 1 | X ) ≈ 0?

Second part of talk

Pointwise rates: optimal if e(X ) smooth, inconsistency if e(X ) degenerate

Global rates: may have a new property, but not sure that belongs in this paper
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Usual Outcome Regression Rates

Standard: strict overlap + X ∈ Rd compact + µ(x , 1) ∈Hölder(βµ)
Hölder: ℓµ = ⌊βµ⌋-order derivatives are (βµ − ℓµ)-smooth

Then optimal rates via local polynomial regression with bandwidth hn → 0+

Regress Y on U((X − x)/h), the 0, . . . , ℓµ-order interactions of (X − x)/hn

Local: weight observations by D ∗ K
(

X−x
hn

)
∼ D ∗

∥∥∥X−x
hn

∥∥∥
Best pointwise rate is n−βµ/(2βµ+d), global is (n/ log(n))−βµ/(2βµ+d)

Two key ingredients: neighbor probability + full-rank

1. Neighbor observation probability P (D = 1, ∥X − x∥ ≤ h) ∼ hd

2. Gram (?) matrix E [UU ′ | D = 1, ∥X − x∥ ≤ h] is full rank
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Weak Overlap Challenges for Local Polynomial Regression

1. Fewer neighboring observations when e(X ) ≈ 0

Weak overlap ⇒ P (D = 1, ∥X − x∥ ≤ h) can be smaller than hd

Turns out, key parameter is Mou et al. (2023)’s α(Mou) ≡ d/(γ0 − 1)

Now neighbor observation probability P (D = 1, ∥X − x∥ ≤ h) ≿ hd+α(Mou)

2. Potential degeneracy of E [UU ′ | D = 1, ∥X − x∥ ≤ h]

Helps to assume e(X ) = E [D | X ] is βe-smooth not quite Hölder

Now Gram matrix behavior has a phase transition around βe = α(Mou)
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What I Have 1: Pointwise, Smooth Propensity Function

Proposition 1

Suppose P(rates) is the set of distributions P ∈ P such that regularity conditions
hold and either βµ < 1 (NW) or βe > α(Mou) (smooth propensities).

Then under local polynomial regression with optimal bandwidth,
supx supP∈P(rates) EP [∥µ̂(x , 1)− µ(x , 1)∥] = O

(
n−βµ/(2βµ+α(Mou)+d)

)
.
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Discussion: Local Rates in Good Case

sup
x

sup
P∈P(rates)

EP [∥µ̂(x , 1)− µ(x , 1)∥] = O
(
n−βµ/(2βµ+α(Mou)+d)

)

Weak overlap parameter α(Mou) plays the role of added covariate dimension

By extending Gäıffas (2005), will be the optimal pointwise rate

Intuition: Gram matrix is full rank under NW (automatic) or smooth propensities
(local expansion), so α(Mou) just harms neighbor probability
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What I have 2: Pointwise, Degenerate Propensity Function

Proposition 2

Suppose P(rates) is the set of distributions P ∈ P such that regularity conditions
hold, βµ > 1 (no NW), α(Mou) > βe (degenerate), and d ≥ 2 (multivariate).

Then if bn is the optimal local polynomial consistency rate,

n−β̄µ/(2β̄µ+α(Mou)+d) ≾ sup
x ,P

EP [∥µ̂(x , 1)− µ(x , 1)∥] ≾ n
−β

µ
/(2β

µ
+α(Mou)+d)

,

where β
µ
≤ β̄µ ≤ βµ − 1 are defined on the next slide. Construction
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Discussion: Local Rates in Bad Case

n

β̄µ=βµ−1−
α(Mou)−βe

βe+3︷ ︸︸ ︷
−β̄µ/(2β̄µ+α(Mou)+d) ≾ sup

x ,P
EP [∥µ̂(x , 1)− µ(x , 1)∥] ≾ n

β
µ
=βµ−1−

α(Mou)−βe
3︷ ︸︸ ︷

−β
µ
/(2β

µ
+α(Mou)+d)

Slower than βµ for βe → α−
(Mou), potential inconsistency for βe ≪ α(Mou)

Can achieve better rates with other estimators (Gäıffas, 2005; Pathak et al., 2023)

Univariate d = 1 is a black hole of mystery to me (Hall et al., 1997)
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The Upshot: Sufficient Conditions for T-Statistics

Proposition 3
Suppose E [Y | X ,D = 1] is βµ-smooth and E [D | X ] is βe-smooth. Define
β
µ
= βµ − 1{α(Mou) > βe , βµ > 1} −max{(α(Mou) − βe)/3, 0}. Suppose

β
µ

2β
µ
+ d γ0

γ0−1

+
βe

(2βe + d) γ0
γ0−1

> 1/2.

There there is a set of feasible nuisance estimators and a bn → 0 such that the
clipped AIPW t-statistics cover with probability tending to 95%.
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What I’m Working On: Global Rates Under Weak Overlap

Usual optimal global rate (n/log(n))−βµ/(2βµ+d) has a polylog penalty

May avoid polylog penalty under weak overlap + smooth propensities

Split X into singularities (E [D | ∥X − x∥ ≤ h] ∼ hα(Mou)+d) and non-singularities

Non-singularities: pointwise rate is better, so can pay a log cost

Singularities: cannot be too close while respecting weak overlap

This has become a nightmare to formalize

Singularities can be degenerate: good news for rates, bad news for Jacob

Is this a different paper? Log penalty won’t show up in AIPW rate requirements

Is lack of polylog penalty even interesting? If it is to you, LET’S TALK

Next: simulations!
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Simulated DGP is Inspired By Ma and Wang (2020)

DGP: weak overlap with γ0 = 1.5

P(e(X ) ≤ π) = π1.5−1, Y = (1− e(X )) + (ε− 4) /
√
8, ε ∼ ξ24 i.i.d.

ê(X ) superparametric, µ̂(X ) nonparametric & biased

ê(X ) = max{e(X )− n−0.6, n−4}, µ̂(X ) = µ(X )(1 + n−3/8)

Clip at rate bn to solve b2nPn(ê(X ) ≤ bn) = 1/(2n)

Saw earlier: unclipped/untrimmed IPW & AIPW t-statistics fail badly

Jacob Dorn Weak Overlap & T-Statistics October 21, 2024 25 / 28



T-Statistics Are Nearly Standard Under Clipped AIPW

n = 1000 n = 10000
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Figure: Distribution of simulated T-statistics for clipped IPW (left) and AIPW (right). Clipped
AIPW T-statistics are close to N (0, 1) (dashed line). Trimmed
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P-Values Are Nearly Uniform Under Clipped AIPW
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Figure: Distribution of simulated p-values on the null of the true APO for clipped IPW (left) and
AIPW (right). Clipped AIPW p-values are close to uniform (dashed line). Trimmed
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Conclusion

Under even weak overlap, clipped AIPW 1.96 ŜE CIs can be well-calibrated

Weak overlap makes regression rates harder, but not impossible

Weak overlap global consistency rates may avoid usual polylog penalty

Potential for future work to apply this approach to other ID failures?

Let’s chat! jdorn@upenn.edu
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Regularity Conditions for DGPs

Let P ≡ P(M , q, σmin, πmin,C , γ0, {rµ,n}, {re,n}) for M > 3σ4min be the set of
distributions P satisfying the following conditions:

1. Conditional moments. E[|Y − E [Y | X ,D]|q | X ,D] ≤ Mq <∞ almost surely
for some q > 3.

2. Residuals. Var(Y | X ,D) ≥ σ2min > 0 almost surely.

3. Treated fraction. P(D = 1) ≥ πmin > 0.

4. Propensity tail. P(e(X ) ≤ π) ≤ Cπγ0−1 for all π ∈ [0, 1] and some γ0 > 1.
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Continuous Weak Overlap

Definition 1

Let P(Cts)(ρ) be the set of distributions P ∈ P such that for all π ∈ [0, 1],
P(e(X ) ≤ π/2) ≤ (1− ρ)P(e(X ) ≤ π).

“We cannot coincidentally have strict overlap with infx e(x) = bn”
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Propensity Smoothness Definition

Assumption 2

There is a fixed M(prop) ≥ 1 s.t. e(X )M(prop) ∈ Σ(βeM(prop), L
βeM(prop)).

Challenge: e(X ) = X 3/2 for X ∼ Unif ([0, 1]) (α(Mou) = 3/2)

Zero-order expansion around x0 = 0: 0

First-order expansion around x0 = 0: 0 + (X − 0) ∗ 0

Second-order expansion around x0 = 0: 0 + 0 + (X−0)2

2 ∗∞

But e(X )4/3 = X 2 is arbitrarily smooth

: measure as βe ∗ 4/3

Could generalize using homogeneous functions

Jacob Dorn Weak Overlap & T-Statistics October 21, 2024 28 / 28



Propensity Smoothness Definition

Assumption 2

There is a fixed M(prop) ≥ 1 s.t. e(X )M(prop) ∈ Σ(βeM(prop), L
βeM(prop)).

Challenge: e(X ) = X 3/2 for X ∼ Unif ([0, 1]) (α(Mou) = 3/2)

Zero-order expansion around x0 = 0: 0

First-order expansion around x0 = 0: 0 + (X − 0) ∗ 0

Second-order expansion around x0 = 0: 0 + 0 + (X−0)2

2 ∗∞

But e(X )4/3 = X 2 is arbitrarily smooth: measure as βe ∗ 4/3

Could generalize using homogeneous functions

Jacob Dorn Weak Overlap & T-Statistics October 21, 2024 28 / 28



Intuition: Pointwise Inconsistency

e(X) E[Y | X, D=1]

−0.50 −0.25 0.00 0.25 0.50−0.50 −0.25 0.00 0.25 0.50

−0.50

−0.25

0.00

0.25

0.50

X1

X
2

Value

0.00

0.05

0.10

0.15

0.20

0.25

Figure: Bad DGP: e(X ) is larger near a curve (α(Mou) − βe in numerator) of sufficient area (1/3 of
denominator) to drive VarKD(X2) (2/3) and CovKD(X2, µ) (bias), and may need disappearing
shoulder width (βe in denominator).

Jacob Dorn Weak Overlap & T-Statistics October 21, 2024 28 / 28



T-Statistics Are Nearly Standard Under Clipped AIPW
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Figure: Distribution of simulated T-statistics for trimmed IPW (left) and AIPW (right). Trimmed
AIPW T-statistics are close to N (0, 1) (dashed line).
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P-Values Are Nearly Uniform Under Trimmed AIPW
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Figure: Distribution of simulated p-values on the null of the true APO for clipped IPW (left) and
AIPW (right). Clipped AIPW p-values are close to uniform (dashed line).
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