How Much Weak Overlap Can Doubly Robust T-Statistics Handle?

Jacob Dorn

October 21, 2024

Problem Setup: Treatment Effects Under Weak Overlap

- **Goal**: estimate treatment effects
 - Focus on APO $\psi_0 = E[E[Y \mid X, D = 1]] = E[\mu(X, 1)]$ for ease
- **Setup**: Outcomes Y, controls X, treatment D, propensity e(X) = E[D | X]
- Usual assumption: strict overlap $\inf_{x} e(x) > 0$, or at least E[1/e(X)] exists
- This paper: what if strict overlap fails?

Paper's Focus: (Augmented) Inverse Propensity Estimators

• Key estimators are Inverse Propensity Weighting and Augmented IPW

$$\hat{\psi}^{(IPW)} = \frac{1}{n} \sum_{i=1}^{n} \frac{D_i Y_i}{\hat{e}(X_i)}, \quad \hat{\psi}^{(AIPW)} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mu}(X_i, 1) + \frac{D_i(Y_i - \hat{\mu}(X_i, 1))}{\hat{e}(X_i)}$$

•
$$E\left[\frac{DY}{\hat{e}} \mid X\right] = \mu(X, 1)e(X)/\hat{e}(X) \approx \mu(X, 1)$$

• $E\left[\hat{\mu} + D\frac{Y-\hat{\mu}}{\hat{e}} \mid X\right] = \mu(X, 1) + (\mu - \hat{\mu})\frac{e-\hat{e}}{\hat{e}} \approx \mu(X, 1)$

- ullet Under strict overlap, Wald $\hat{\psi}\pm 1.96~\hat{SE}$ CIs cover with Prob ightarrow 95%
- Under weak overlap, both estimators nearly divide by zero

Under Weak Overlap, Usual Asymptotics Fail

Figure: Weak overlap simulation (described later): IPW/AIPW t-statistics are far from $\mathcal{N}(0,1)$ (dashed line). Under weak overlap, (A)IPW is consistent but not asymptotically Gaussian.

Existing Literature for Weak Overlap

• Theory: target standard ψ_0 with nonstandard estimators

- New estimators like using $E[DY \mid e(X)]$ (Chaudhuri and Hill, 2016; Ma and Wang, 2020; Sasaki and Ura, 2022)
- Confidence intervals like self-normalized subsampling (Ma and Wang, 2020; Heiler and Kazak, 2021)
- Practice: nonstandard estimands by weighting, trimming, or <u>clipping</u>

Crump et al. (2009); Yang and Ding (2018); Li et al. (2018); Ma and Wang (2020), ...

$$\hat{\psi}^{(IPW)}(b_n) = \frac{1}{n} \sum_{i=1}^n \frac{D_i Y_i}{\max\{\hat{e}(X_i), b_n\}}, \quad \hat{\psi}^{(AIPW)}(b_n) = \frac{1}{n} \sum_{i=1}^n \hat{\mu}(X_i, 1) + \frac{D_i(Y_i - \hat{\mu}(X_i, 1))}{\max\{\hat{e}(X_i), b_n\}}$$

Under clipped AIPW with the right rates, then standard $\hat{\psi} \pm 1.96\hat{SE}$ Cls cover the target ψ_0 even under weak overlap

- Ma and Wang (2020): clipped IPW $\rightarrow^d \mathcal{N}(\cdot, \cdot)$, but bias even if *e* known
- Standard arguments: AIPW debiases \hat{e} propensity error with $\hat{\mu}$
- Key insight: AIPW also debiases e clipping with $\hat{\mu}$
- But what debiases $\hat{\mu}$ with clipping?

- Ma and Wang (2020): clipped IPW $\rightarrow^d \mathcal{N}(\cdot, \cdot)$, but bias even if *e* known
- Standard arguments: AIPW debiases \hat{e} propensity error with $\hat{\mu}$
- \bullet Key insight: AIPW also debiases e clipping with $\hat{\mu}$
- $\bullet\,$ But what debiases $\hat{\mu}$ with clipping? Clipping \rightarrow 0

Contributions

- Inference under weak overlap Khan and Tamer (2010); Ma and Wang (2020); Ma et al. (2023), ...
 - ullet Uniform coverage of Wald $\hat{\mu} \pm 1.96 \hat{SE}$ CIs using standard clipped AIPW
 - Clipped AIPW is NOT the optimal estimator dominated by smarter things
- Two useful tricks for nonstandard estimands similar ideas in e.g. Semenova (2024)
 - Neyman orthogonal debiasing can apply to shifts away from ID failure
 - Points very near ID failure cannot be too common under margin conditions
- Regression with degenerate designs Hall et al. (1997); Gaïffas (2005); Pathak et al. (2023), some others
 - New results for local polynomial regression under weak overlap
 - Should this be a different paper(s)??

- 1. Clipped AIPW asymptotics: main result + proof overview
- 2. Achieving regression rates under weak overlap
- 3. Simulations

- Usual strict overlap assumptions
 - $\bullet\,$ Propensity scores bounded away from 0 and 1
 - Cross-fitting estimates of nuisances $\hat{\mu}, \hat{e}$ (will maintain)
 - Product of errors $\|\hat{e} e\|_{P,2} = O_P(r_e), \|\hat{\mu} \mu\|_{P,2} = O_P(r_\mu)$, and $r_e * r_\mu = o(n^{-1/2})$
- Then t-statistics are well-calibrated: $rac{\hat{\psi}^{{\scriptscriptstyle AIPW}}-\psi_0}{\hat{\sigma}}
 ightarrow^d \mathcal{N}(0,1)$

Starting Point for Weak Overlap: Ma and Wang (2020)

- $P(e(X) \leq \pi) \sim \pi^{\gamma_0 1}$
 - $\gamma_0 > 2$: E[1/e(X)] exists and standard asymptotics hold
 - $\gamma_0 < 2$: $E[1/e(X)] = \infty$ and IPW is not asymptotically normal even if e(X) is known
 - $\gamma_0 \leq 1$: E[DY/e(X)] may not be identified
- Heavy trimming (or clipping) \Rightarrow asymptotic normality with bias (Ma and Wang, 2020)

Assumption 1

Observe data $(X, D, Y) \sim P \in \mathscr{P}$, where \mathscr{P} requires regularity conditions and $P(e(X) \leq \pi) \leq C\pi^{\gamma_0-1}$ for some fixed $C > 0, \gamma_0 > 1$.

- Uniform: overlap can be stronger or nonsmooth under ${\mathscr P}$
- I also use $\mathscr{P}^{(cts)}$ for distributions that have "continuous" weak overlap lacksquare

- Sup-norms $\sup_x |\hat{\eta}(x) \eta(x)| = o_P(r_\eta)$ to ensure rates near e(x) = 0
- Stronger rates needed on r_e, r_μ too
 - Product of errors: $r_{\mu}r_{e}(1+b_{n}^{(\gamma_{0}-2)/2})=o(n^{-1/2})$ $(b_{n}^{(\gamma_{0}-2)/2} \to \infty \text{ for } \gamma_{0}<2)$
 - Debiased $\hat{\mu}$: $r_{\mu}b_n^{(\gamma_0-2)*2/\gamma_0}=o(n^{-1/2})$, though laxer if $P\in \mathscr{P}^{(cts)}$
 - Consistency $(b_n \rightarrow 0)$ and asymp. known thresholding $(r_e = o(b_n))$

Theorem 1

Suppose $n^{-1/2} \ll b_n \ll 1$ and the rate conditions above hold. Then clipped AIPW t-statistics are well-calibrated under weak overlap:

$$\limsup_{n\to\infty}\sup_{P\in\mathscr{P}}\sup_{t\in\mathbb{R}}\left|P_n\left(\frac{\hat{\psi}_{clip}^{AIPW}(b_n)-\psi(P)}{\hat{\sigma}_n}\leq t\right)-\Phi(t)\right|=0.$$

1. Oracle CLT:
$$\frac{\hat{\psi}_{(orcl)}(b_n) - \psi}{\sigma_n} \rightarrow^d \mathcal{N}(0, 1)$$
, where σ_n is oracle SE

2. Oracle equivalence:
$$rac{\hat{\psi} - \hat{\psi}_{(orcl)}}{\sigma_n}
ightarrow_P 0$$

3. Standard error consistency:
$$\frac{\hat{\sigma}_n}{\sigma_n} \rightarrow_P 1$$
 uniformly

Overview of Proof of T-Stat $rac{\hat{\psi}(b_n)-\psi}{\hat{\sigma}} ightarrow^d\mathcal{N}(0,1)$

1. Oracle CLT:
$$\frac{\hat{\psi}_{(orcl)}(b_n) - \psi}{\sigma_n} \rightarrow^d \mathcal{N}(0, 1)$$
, where σ_n is oracle SE

• Ma and Wang (2020):
$$rac{\hat{\psi}_{(orcl)}^{(\mu W)}(b_n)-\psi- heta_n}{\sigma_n}
ightarrow^d\mathcal{N}(0,1)$$

• Uniform CLT with Berry–Esseen Theorem
•
$$\frac{\hat{\psi}_{(orcl)}^{(AIPW)}(b_n)-\psi}{\sigma_n} \rightarrow^d \mathcal{N}(0,1)$$
 by A of AIPW

• Convergence rate may be
$$\sigma_n^2 \sim n^{-1} b_n^{\gamma_0-3}$$

2. Oracle equivalence:
$$\frac{\hat{\psi} - \hat{\psi}_{(orcl)}}{\sigma_n} \rightarrow_P 0$$

3. Standard error consistency:
$$\frac{\hat{\sigma}_n}{\sigma_n} \rightarrow_P 1$$
 uniformly

1. Oracle CLT:
$$\frac{\hat{\psi}_{(orcl)}(b_n)-\psi}{\sigma_n} \rightarrow^d \mathcal{N}(0,1)$$
, where σ_n is oracle SE

2. Oracle equivalence: $\frac{\hat{\psi} - \hat{\psi}_{(orcl)}}{\sigma_n} \rightarrow_P 0$

• Follows by the bias intuition from earlier + lots of algebra

• Behavior driven by $e(X) \in [0, b_n(1 + \epsilon)]$

3. Standard error consistency:
$$\frac{\hat{\sigma}_n}{\sigma_n} \rightarrow_P 1$$
 uniformly

1. Oracle CLT:
$$\frac{\hat{\psi}_{(orcl)}(b_n) - \psi}{\sigma_n} \rightarrow^d \mathcal{N}(0, 1)$$
, where σ_n is oracle SE

2. Oracle equivalence:
$$\frac{\hat{\psi} - \hat{\psi}_{(orcl)}}{\sigma_n} \rightarrow_P 0$$

3. Standard error consistency:
$$\frac{\hat{\sigma}_n}{\sigma_n} \rightarrow_P 1$$
 uniformly: easier!

Interpreting Rate Requirements $(P \in \mathscr{P}^{(Cts)})$

• $\gamma_0 > 2$ (strict overlap): usual rates basically enough

• For fixed
$$\gamma_0>1$$
, $b_n
ightarrow 0$ exists if...

•
$$r_{\mu}, r_e = o(n^{-1/3}) \text{ OR}$$

• $r_e = O(n^{-1/2}) \text{ and } r_{\mu} = o(n^{-1/4}) \text{ OR}$
• $r_e = o(1) \text{ and } r_{\mu} = O(n^{-1/2})$

A "curse of weak overlap" if μ̂ is nonparametric: r_μ * r_e = o(n^{-1/2}) not enough
 Intuition: If r_μ is parametric, we are done, but if r_e is parametric, still need to debias μ̂

- Need stronger rates for $\hat{e}(X)$ and $\hat{\mu}(X,1)$ for $P(D=1\mid X)pprox 0$
- AND weak overlap makes $\hat{\mu}(X, 1)$ harder for $P(D = 1 \mid X) \approx 0$
- Can we estimate E[Y | X, D = 1] when $P(D = 1 | X) \approx 0$?

- Need stronger rates for $\hat{e}(X)$ and $\hat{\mu}(X,1)$ for $P(D=1\mid X)pprox 0$
- AND weak overlap makes $\hat{\mu}(X,1)$ harder for $P(D=1\mid X)pprox 0$
- Can we estimate $E[Y \mid X, D = 1]$ when $P(D = 1 \mid X) \approx 0$? Second part of talk
 - Pointwise rates: optimal if e(X) smooth, inconsistency if e(X) degenerate
 - Global rates: may have a new property, but not sure that belongs in this paper

Usual Outcome Regression Rates

- Standard: strict overlap $+ X \in \mathbb{R}^d$ compact $+ \mu(x, 1) \in H$ ölder (β_μ)
 - Hölder: $\ell_{\mu} = \lfloor \beta_{\mu} \rfloor$ -order derivatives are ($\beta_{\mu} \ell_{\mu}$)-smooth
- Then optimal rates via local polynomial regression with bandwidth $h_n \rightarrow 0^+$
 - Regress Y on U((X-x)/h), the $0,\ldots,\ell_\mu$ -order interactions of $(X-x)/h_n$
 - Local: weight observations by $D * K\left(\frac{X-x}{h_n}\right) \sim D * \left\|\frac{X-x}{h_n}\right\|$
 - Best pointwise rate is $n^{-\beta_{\mu}/(2\beta_{\mu}+d)}$, global is $(n/\log(n))^{-\beta_{\mu}/(2\beta_{\mu}+d)}$
- Two key ingredients: neighbor probability + full-rank
 - 1. Neighbor observation probability $P(D = 1, ||X x|| \le h) \sim h^d$
 - 2. Gram (?) matrix $E[UU' \mid D = 1, ||X x|| \le h]$ is full rank

Weak Overlap Challenges for Local Polynomial Regression

- 1. Fewer neighboring observations when $e(X) \approx 0$
 - Weak overlap \Rightarrow $P(D = 1, ||X x|| \le h)$ can be smaller than h^d
 - Turns out, key parameter is Mou et al. (2023)'s $lpha_{(Mou)}\equiv d/(\gamma_0-1)$
 - Now neighbor observation probability $P\left(D=1, \|X-x\|\leq h
 ight) \succsim h^{d+lpha_{(Mou)}}$
- 2. Potential degeneracy of $E[UU' \mid D = 1, ||X x|| \le h]$
 - Helps to assume $e(X) = E[D \mid X]$ is β_e -smooth \bullet not quite Hölder
 - Now Gram matrix behavior has a phase transition around $\beta_e = \alpha_{(Mou)}$

Proposition 1

Suppose $\mathscr{P}^{(rates)}$ is the set of distributions $P \in \mathscr{P}$ such that regularity conditions hold and either $\beta_{\mu} < 1$ (NW) or $\beta_{e} > \alpha_{(Mou)}$ (smooth propensities).

Then under local polynomial regression with optimal bandwidth, $\sup_{x} \sup_{P \in \mathscr{P}^{(rates)}} E_{P} \left[\|\hat{\mu}(x,1) - \mu(x,1)\| \right] = O\left(n^{-\beta_{\mu}/(2\beta_{\mu} + \alpha_{(Mou)} + d)} \right).$

$$\sup_{x} \sup_{P \in \mathscr{P}^{(rates)}} E_{P}\left[\| \hat{\mu}(x,1) - \mu(x,1) \| \right] = O\left(n^{-\beta_{\mu}/(2\beta_{\mu} + \alpha_{(Mou)} + d)} \right)$$

- Weak overlap parameter $\alpha_{(Mou)}$ plays the role of added covariate dimension
- By extending Gaïffas (2005), will be the optimal pointwise rate
- Intuition: Gram matrix is full rank under NW (automatic) or smooth propensities (local expansion), so $\alpha_{(Mou)}$ just harms neighbor probability

Proposition 2

Suppose $\mathscr{P}^{(rates)}$ is the set of distributions $P \in \mathscr{P}$ such that regularity conditions hold, $\beta_{\mu} > 1$ (no NW), $\alpha_{(Mou)} > \beta_{e}$ (degenerate), and $d \geq 2$ (multivariate).

Then if b_n is the optimal local polynomial consistency rate,

$$n^{-\bar{\beta}_{\mu}/(2\bar{\beta}_{\mu}+\alpha_{(Mou)}+d)} \precsim \sup_{x,P} E_{P}\left[\|\hat{\mu}(x,1)-\mu(x,1)\|\right] \precsim n^{-\underline{\beta}_{\mu}/(2\underline{\beta}_{\mu}+\alpha_{(Mou)}+d)},$$

where $\underline{\beta}_{\mu} \leq \overline{\beta}_{\mu} \leq \beta_{\mu} - 1$ are defined on the next slide. lacksquare

$$n^{\frac{\bar{\beta}_{\mu}=\beta_{\mu}-1-\frac{\alpha_{(Mou)}-\beta_{e}}{\beta_{e}+3}}}_{-\bar{\beta}_{\mu}/(2\bar{\beta}_{\mu}+\alpha_{(Mou)}+d)} \precsim \sup_{x,P} E_{P}\left[\|\hat{\mu}(x,1)-\mu(x,1)\|\right] \precsim n^{\frac{\bar{\beta}_{\mu}=\beta_{\mu}-1-\frac{\alpha_{(Mou)}-\beta_{e}}{3}}{-\underline{\beta}_{\mu}/(2\underline{\beta}_{\mu}+\alpha_{(Mou)}+d)}}$$

• Slower than β_{μ} for $\beta_{e} \to \alpha_{(Mou)}^{-}$, potential inconsistency for $\beta_{e} \ll \alpha_{(Mou)}$ •

- Can achieve better rates with other estimators (Gaïffas, 2005; Pathak et al., 2023)
- Univariate d = 1 is a black hole of mystery to me (Hall et al., 1997)

Jacob Dorn

Weak Overlap & T-Statistics

Proposition 3

Suppose $E[Y \mid X, D = 1]$ is β_{μ} -smooth and $E[D \mid X]$ is β_{e} -smooth. Define $\underline{\beta}_{\mu} = \beta_{\mu} - 1\{\alpha_{(Mou)} > \beta_{e}, \beta_{\mu} > 1\} - \max\{(\alpha_{(Mou)} - \beta_{e})/3, 0\}$. Suppose

$$rac{eta_{\mu}}{2 ar{eta_{\mu}}+drac{\gamma_0}{\gamma_0-1}}+rac{eta_e}{\left(2 eta_e+d
ight)rac{\gamma_0}{\gamma_0-1}}>1/2.$$

There there is a set of feasible nuisance estimators and a $b_n \rightarrow 0$ such that the clipped AIPW t-statistics cover with probability tending to 95%.

What I'm Working On: Global Rates Under Weak Overlap

- Usual optimal global rate $(n/\log(n))^{-\beta_{\mu}/(2\beta_{\mu}+d)}$ has a polylog penalty
- May avoid polylog penalty under weak overlap + smooth propensities
 - Split X into singularities $(E[D \mid \|X x\| \leq h] \sim h^{lpha_{(Mou)} + d})$ and non-singularities
 - Non-singularities: pointwise rate is better, so can pay a log cost
 - Singularities: cannot be too close while respecting weak overlap

What I'm Working On: Global Rates Under Weak Overlap

- Usual optimal global rate $(n/\log(n))^{-\beta_{\mu}/(2\beta_{\mu}+d)}$ has a polylog penalty
- May avoid polylog penalty under weak overlap + smooth propensities
 - Split X into singularities $(E[D \mid \|X x\| \leq h] \sim h^{lpha_{(Mou)} + d})$ and non-singularities
 - Non-singularities: pointwise rate is better, so can pay a log cost
 - Singularities: cannot be too close while respecting weak overlap
- This has become a nightmare to formalize
 - Singularities can be degenerate: good news for rates, bad news for Jacob
 - Is this a different paper? Log penalty won't show up in AIPW rate requirements
 - Is lack of polylog penalty even interesting? If it is to you, LET'S TALK

What I'm Working On: Global Rates Under Weak Overlap

- Usual optimal global rate $(n/\log(n))^{-\beta_{\mu}/(2\beta_{\mu}+d)}$ has a polylog penalty
- May avoid polylog penalty under weak overlap + smooth propensities
 - Split X into singularities $(E[D \mid \|X x\| \leq h] \sim h^{lpha_{(Mou)} + d})$ and non-singularities
 - Non-singularities: pointwise rate is better, so can pay a log cost
 - Singularities: cannot be too close while respecting weak overlap
- This has become a nightmare to formalize
 - Singularities can be degenerate: good news for rates, bad news for Jacob
 - Is this a different paper? Log penalty won't show up in AIPW rate requirements
 - Is lack of polylog penalty even interesting? If it is to you, LET'S TALK

Next: simulations!

Simulated DGP is Inspired By Ma and Wang (2020)

- DGP: weak overlap with $\gamma_0 = 1.5$
 - $P(e(X) \le \pi) = \pi^{1.5-1}$, $Y = (1 e(X)) + (\varepsilon 4) / \sqrt{8}$, $\varepsilon \sim \xi_4^2$ i.i.d.
- ê(X) superparametric, μ̂(X) nonparametric & biased
 ê(X) = max{e(X) n^{-0.6}, n⁻⁴}, μ̂(X) = μ(X)(1 + n^{-3/8})
- Clip at rate b_n to solve $b_n^2 P_n(\hat{e}(X) \leq b_n) = 1/(2n)$
- Saw earlier: unclipped/untrimmed IPW & AIPW t-statistics fail badly

T-Statistics Are Nearly Standard Under Clipped AIPW

Figure: Distribution of simulated T-statistics for clipped IPW (left) and AIPW (right). Clipped AIPW T-statistics are close to $\mathcal{N}(0,1)$ (dashed line). Trimmed

P-Values Are Nearly Uniform Under Clipped AIPW

Figure: Distribution of simulated p-values on the null of the true APO for clipped IPW (left) and AIPW (right). Clipped AIPW p-values are close to uniform (dashed line). • Trimmed

- Under even weak overlap, clipped AIPW 1.96 \hat{SE} CIs can be well-calibrated
- Weak overlap makes regression rates harder, but not impossible
- Weak overlap global consistency rates may avoid usual polylog penalty
- Potential for future work to apply this approach to other ID failures?

- Under even weak overlap, clipped AIPW 1.96 \hat{SE} CIs can be well-calibrated
- Weak overlap makes regression rates harder, but not impossible
- Weak overlap global consistency rates may avoid usual polylog penalty
- Potential for future work to apply this approach to other ID failures?

Let's chat! jdorn@upenn.edu

- Saraswata Chaudhuri and Jonathan B Hill. Heavy tail robust estimation and inference for average treatment effects, 2016.
- Richard K. Crump, V. Joseph Hotz, Guido W. Imbens, and Oscar A. Mitnik. Dealing with limited overlap in estimation of average treatment effects. *Biometrika*, 96(1): 187–199, 01 2009. ISSN 0006-3444. doi: 10.1093/biomet/asn055. URL https://doi.org/10.1093/biomet/asn055.
- Stéphane Gaïffas. Convergence rates for pointwise curve estimation with a degenerate design. *Mathematical Methods of Statistics*, 14(1), 2005.
- Peter Hall, J. S. Marron, M. H. Neumann, and D. M. Titterington. Curve estimation when the design density is low. *The Annals of Statistics*, 25(2):756 – 770, 1997. doi: 10.1214/aos/1031833672. URL https://doi.org/10.1214/aos/1031833672.

- Phillip Heiler and Ekaterina Kazak. Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores. Journal of Econometrics, 222(2):1083–1108, 2021. ISSN 0304-4076. doi: https://doi.org/10.1016/j.jeconom.2020.03.025. URL https: //www.sciencedirect.com/science/article/pii/S0304407620303377.
- Shakeeb Khan and Elie Tamer. Irregular identification, support conditions, and inverse weight estimation. *Econometrica*, 78(6):2021–2042, 2010. doi: https://doi.org/10.3982/ECTA7372. URL
 - https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA7372.
- Fan Li, Kari Lock Morgan, and Alan M Zaslavsky. Balancing covariates via propensity score weighting. *Journal of the American Statistical Association*, 113 (521):390–400, 2018. doi: 10.1080/01621459.2016.1260466.

- Xinwei Ma and Jingshen Wang. Robust inference using inverse probability weighting. *Journal of the American Statistical Association*, 115(532):1851–1860, 2020.
- Xinwei Ma, Yuya Sasaki, and Yulong Wang. Testing limited overlap. *Econometric Theory*, 2023.
- Wenlong Mou, Peng Ding, Martin J. Wainwright, and Peter L. Bartlett. Kernel-based off-policy estimation without overlap: Instance optimality beyond semiparametric efficiency, 2023.
- Reese Pathak, Martin J. Wainwright, and Lin Xiao. Noisy recovery from random linear observations: Sharp minimax rates under elliptical constraints, 2023. URL https://arxiv.org/abs/2303.12613.

- Yuya Sasaki and Takuya Ura. Estimation and inference for moments of ratios with robustness against large trimming bias. *Econometric Theory*, 38(1):66–112, 2022. doi: 10.1017/S0266466621000025.
- Vira Semenova. Aggregated intersection bounds and aggregated minimax values, 2024. URL https://arxiv.org/abs/2303.00982.
- S Yang and P Ding. Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores. *Biometrika*, 105(2):487–493, 03 2018. ISSN 0006-3444. doi: 10.1093/biomet/asy008. URL https://doi.org/10.1093/biomet/asy008.

Let $\mathscr{P} \equiv \mathscr{P}(M, q, \sigma_{\min}, \pi_{\min}, C, \gamma_0, \{r_{\mu,n}\}, \{r_{e,n}\})$ for $M > 3\sigma_{\min}^4$ be the set of distributions P satisfying the following conditions:

- 1. Conditional moments. $\mathbb{E}[|Y E[Y | X, D]|^q | X, D] \le M^q < \infty$ almost surely for some q > 3.
- 2. Residuals. Var $(Y \mid X, D) \ge \sigma_{\min}^2 > 0$ almost surely.
- 3. Treated fraction. $P(D = 1) \ge \pi_{\min} > 0$.

4. Propensity tail. $P(e(X) \le \pi) \le C\pi^{\gamma_0-1}$ for all $\pi \in [0,1]$ and some $\gamma_0 > 1$.

Definition 1

Let $\mathscr{P}^{(Cts)}(\rho)$ be the set of distributions $P \in \mathscr{P}$ such that for all $\pi \in [0, 1]$, $P(e(X) \leq \pi/2) \leq (1 - \rho)P(e(X) \leq \pi)$.

• "We cannot coincidentally have strict overlap with $\inf_x e(x) = b_n$ "

- Challenge: $e(X) = X^{3/2}$ for $X \sim Unif([0,1])$ $(\alpha_{(Mou)} = 3/2)$
 - Zero-order expansion around $x_0 = 0: 0$
 - First-order expansion around $x_0 = 0: 0 + (X 0) * 0$
 - Second-order expansion around $x_0 = 0$: $0 + 0 + \frac{(X-0)^2}{2} * \infty$

• But
$$e(X)^{4/3} = X^2$$
 is arbitrarily smooth

Propensity Smoothness Definition

Assumption 2

There is a fixed
$$M_{(prop)} \geq 1$$
 s.t. $e(X)^{M_{(prop)}} \in \Sigma(eta_e M_{(prop)}, L^{eta_e M_{(prop)}}).$

• Challenge:
$$e(X) = X^{3/2}$$
 for $X \sim Unif([0,1])$ $(\alpha_{(Mou)} = 3/2)$

- Zero-order expansion around $x_0 = 0: 0$
- First-order expansion around $x_0 = 0: 0 + (X 0) * 0$
- Second-order expansion around $x_0 = 0$: $0 + 0 + \frac{(X-0)^2}{2} * \infty$

• But $e(X)^{4/3} = X^2$ is arbitrarily smooth: measure as $\beta_e * 4/3$

Could generalize using homogeneous functions

Intuition: Pointwise Inconsistency

Figure: Bad DGP: e(X) is larger near a curve $(\alpha_{(Mou)} - \beta_e \text{ in numerator})$ of sufficient area (1/3 of denominator) to drive $Var_{KD}(X_2)$ (2/3) and $Cov_{KD}(X_2, \mu)$ (bias), and may need disappearing shoulder width (β_e in denominator).

T-Statistics Are Nearly Standard Under Clipped AIPW

Figure: Distribution of simulated T-statistics for trimmed IPW (left) and AIPW (right). Trimmed AIPW T-statistics are close to $\mathcal{N}(0,1)$ (dashed line).

P-Values Are Nearly Uniform Under Trimmed AIPW

Figure: Distribution of simulated p-values on the null of the true APO for clipped IPW (left) and AIPW (right). Clipped AIPW p-values are close to uniform (dashed line).