
Sharp Sensitivity Analysis for Inverse Propensity Weighting via
Quantile Balancing ∗

Jacob Dorn
Department of Economics

Princeton University

Kevin Guo
Department of Statistics

Stanford University

Abstract

Inverse propensity weighting (IPW) is a popular method for estimating treatment effects from obser-
vational data. However, its correctness relies on the untestable (and frequently implausible) assumption
that all confounders have been measured. This paper introduces a robust sensitivity analysis for IPW
that estimates the range of treatment effects compatible with a given amount of unobserved confound-
ing. The estimated range converges to the narrowest possible interval (under the given assumptions)
that must contain the true treatment effect. Our proposal is a refinement of the influential sensitivity
analysis by Zhao, Small, and Bhattacharya (2019), which we show gives bounds that are too wide even
asymptotically. This analysis is based on new partial identification results for Tan (2006)’s marginal
sensitivity model.

Keywords: unobserved confounding, partial identification, quantile regression

1 Introduction

Estimating treatment effects from observational data is difficult because “treated” and “control” samples
typically differ on many characteristics besides treatment status. For example, consumers of nutritional
supplements may be wealthier or more health-conscious than those not taking supplements. One popular
tool for adjusting for such baseline imbalances is Inverse Propensity Weighting (IPW) [4, 19]. This technique
re-weights treated and untreated samples to be similar along all observed characteristics and then compares
outcomes in the weighted samples. The crucial assumption underlying this approach is that the weighted
samples do not systematically differ along important unobserved characteristics. This “unconfoundedness”
assumption is untestable, and often implausible.

This paper studies how much can be learned when unconfoundedness does not hold, but one can bound
the plausible degree of unobserved confounding. In particular, given a “sensitivity assumption” controlling
the degree of selection, we aim to answer two questions:

(1) Sensitivity analysis. Can we bound how much the IPW point estimate from our “primary analysis”
might change if unobserved confounding were properly accounted for?

(2) Partial identification. Can we characterize the most informative bounds that could possibly be ob-
tained from the sensitivity assumption with even an infinite amount of observational data?

∗This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program
under Grant No. DGE-2039656. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation. We are grateful to the
associate editor and several anonymous referees for careful feedback. We are also grateful for comments from Guillaume Basse,
Bo Honoré, Nathan Kallus, Michal Kolesár, David Lee, Xinran Li, Ulrich Müller, Karl Schulze, Dylan Small, Angela Zhou,
Qingyuan Zhao, and seminar participants at Berkeley, Cambridge, and Princeton.
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The specific sensitivity assumption used in this paper is the “marginal sensitivity model” of [56], which
is a variant of Rosenbaum’s famous “Γ sensitivity model” [48, 45, 46] that is better suited for IPW analyses.
This sensitivity assumption is quite popular in causal inference; see [56, 27, 28, 29, 26, 60, 34, 49, 50, 54] for
an incomplete list of references. As we will see, it lends itself to computationally-efficient sensitivity analyses
which are simple enough to explain to any practitioner comfortable with IPW.

Recently, Zhao, Small, and Bhattacharya [60] (hereafter ZSB) introduced an interpretable IPW sensitiv-
ity analysis for the marginal sensitivity model that has been largely responsible for the recent resurgence
of interest in this sensitivity assumption. However, they did not answer the partial identification question,
leaving open the possibility that more informative bounds could be obtained from the same data and as-
sumptions. Indeed, there are no existing partial identification results for the marginal sensitivity model that
can be used to benchmark a sensitivity analysis.

The first main contribution of this paper is to provide a complete answer to the partial identification
question (2). We derive closed-form expressions for the largest and smallest values of the “usual” estimands
(e.g. average treatment effect) compatible with the marginal sensitivity assumption. These expressions
show that the ZSB bounds are essentially always conservative because they ignore an infinite collection of
constraints implied by the distribution of observed characteristics. [56] also identified these constraints, but
deemed it intractable to incorporate them all in a sensitivity analysis. In contrast, our partial identification
results show that this collection can actually be reduced to a single constraint which is easy to incorporate.

Our second main contribution is to introduce a new IPW sensitivity analysis, which we call the quantile
balancing method. The method is a simple refinement of the ZSB sensitivity analysis, and has several de-
sireable features:

(i) The quantile balancing sensitivity interval is always a subset of the ZSB interval. Outside of knife-edge
cases, it is a strict subset.

(ii) When the outcome’s conditional quantiles can be estimated consistently, the bounds converge to the
sharp partial identification region for the average treatment effect (the best possible bounds that can be
obtained under the marginal sensitivity model). With some abuse of terminology, we say that quantile
balancing is “sharp.”

(iii) Under standard assumptions for IPW inference, the bounds can be converted into confidence intervals
using the same percentile bootstrap scheme proposed by ZSB.

(iv) When the estimated quantiles are inconsistent, the sensitivity interval is too wide rather than too
narrow and the confidence intervals over-cover rather than under-cover. In other words, our intervals
are guaranteed to be valid, regardless of the quality of the additional input we demand.

We apply the quantile balancing method in several simulated examples and one real-data application,
and find that it can substantially tighten the ZSB bounds when the covariates are good predictors of the
outcome. We also extend our analysis to Augmented IPW (AIPW) estimators. That analysis shows that
a slight refinement of the ZSB method is sharp under “additive-noise” data generating processes, though
the refinement makes little difference in practice. One shortcoming we will mention up-front is that our
statistical guarantees assume the outcome is continuously-distributed in order to enable quantile regression.
Since our partial identification results also apply to discrete outcomes, we conjecture that the quantile
balancing procedure could be modified to give sharp bounds in that setting too.

1.1 Setting and background

We consider the Neyman-Rubin potential outcomes model with a binary treatment [42, 51]. We observe
i.i.d. samples (Xi, Yi, Zi) from a distribution P , where Xi ∈ X ⊆ Rd is a vector of covariates, Zi ∈ {0, 1} is
a binary treatment assignment indicator, and Yi ∈ R is a real-valued outcome.

We assume that each sample (Xi, Yi, Zi) is obtained by coarsening a “full data” sample (Xi, Yi(0), Yi(1), Zi, Ui).
Here, Yi(0) and Yi(1) are potential outcomes and Ui is a vector of unobserved confounders of unspecified
dimension. The observed outcome is related to the potential outcomes through the consistency relation
Yi = ZiYi(1) + (1− Zi)Yi(0).
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The goal is to use the observed data to draw inferences about a causal estimand ψ0. For the purposes
of exposition, we initially focus on the counterfactual means ψT = E[Y (1)] and ψC = E[Y (0)], although the
examples of most practical interest are the average treatment effect (ATE) and the average treatment effect
on the treated (ATT).

ψATE = E[Y (1)− Y (0)]

ψATT = E[Y (1)− Y (0)|Z = 1].

With minor modification, our identification results can also be applied to more complex estimands, including
policy values [3, 27] and weighted average treatment effects. However, we do not present those extensions in
this paper.

Under the unconfoundedness assumption (Y (0), Y (1)) |= Z | X, all of the above quantities can be con-
sistently estimated from the observed data using inverse propensity weighting. IPW estimators work by
reweighting the observed sample by some function of the propensity score e(x) := P (Z = 1|X = x). For
example, if the estimand of interest is ψT, the (stabilized) IPW estimator is given by (1):

ψ̂T =
En[Y Z/ê(X)]

En[Z/ê(X)]
(1)

Here, ê(·) is an estimate of the propensity score e(·) and En[·] is shorthand for 1
n

∑n
i=1[·]i. An unstabilized

version of ψ̂T which uses only the numerator of (1) is also common. Related estimators for the other

estimands considered will be denoted by ψ̂C, ψ̂ATE, and ψ̂ATT. See the articles by [4] or [19] for their exact
formulas.

We will assume some conditions which are required for identification and estimation under unconfound-
edness: overlap (0 < e(X) < 1 almost surely) and one outcome moment (EP [|Y |] < ∞). However, we will
not assume unconfoundedness.

2 The marginal sensitivity model

The marginal sensitivity model introduced by [56] is a relaxation of unconfoundedness which has been applied
in many causal inference problems. This one-parameter sensitivity assumption allows for the existence of
unobserved confounders U , but limits the degree of selection bias that can be attributed to these confounders.

Assumption Λ. (Marginal sensitivity model)
There exists a vector of unmeasured confounders U that, if measured, would lead to unconfoundedness:
(Y (0), Y (1)) |= Z | (X,U). However, within each stratum of the observed covariates, measuring U can only
change the odds of treatment by at most a factor of Λ, i.e. if we set e0(x, u) := P (Z = 1|X = x, U = u),
then (2) holds with probability one.

Λ−1 ≤ e0(X,U)/[1− e0(X,U)]

e(X)/[1− e(X)]
≤ Λ (2)

The statement of the marginal sensitivity model presented in [56] and [60] uses the potential outcomes
(Y (0), Y (1)) in place of the unobserved variable U . However, as pointed out by a referee, these assumptions
are equivalent.

To avoid confusion between e0 and e, we will follow [29] and refer to e0 as the “true propensity score”
and e as the “nominal propensity score.”

Like Rosenbaum’s famous “Γ sensitivity model”, Assumption Λ controls the degree of unobserved con-
founding with a single parameter. When Λ = 1, measuring additional confounders cannot change the odds of
treatment at all, i.e. treatment assignment is unconfounded. As Λ increases, stronger forms of confounding
are allowed. For advice on how to choose this parameter, see [21]. For more on the relationship between
this and Rosenbaum’s model, see [60] Section 7.1. The marginal sensitivity assumption is “nonparametric”
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in the sense that no assumptions are needed about how e0 depends on u. Even the dimension of the vector
U does not need to be specified.

To see how Assumption Λ can be used for sensitivity analysis, begin by considering how an oracle
statistician who observed the confounders Ui might estimate ψT. One strategy would be to use the IPW
estimator (3), which is consistent under weak assumptions.

ψ̂∗
T =

∑n
i=1 YiZi/e0(Xi, Ui)∑n
i=1 Zi/e0(Xi, Ui)

. (3)

In reality, {Ui}i≤n are not observed, but under Assumption Λ, it is possible to bound the true propensity
scores e0(Xi, Ui). In particular, the vector (e0(X1, U1), · · · , e0(Xn, Un)) must belong to the ZSB constraint
set En(Λ) defined in (4).

En(Λ) =
{
ē ∈ Rn : Λ−1 ≤ ēi/(1− ēi)

e(Xi)/[1− e(Xi)]
≤ Λ

}
(4)

ZSB proposed bounding the oracle statistician’s IPW estimator (3) with the largest and smallest IPW
estimates that can be obtained using putative propensities in En(Λ).

[ψ̂−
T,ZSB, ψ̂

+
T,ZSB] =

[
min

ē∈En(Λ)

∑n
i=1 YiZi/ēi∑n
i=1 Zi/ēi

, max
ē∈En(Λ)

∑n
i=1 YiZi/ēi∑n
i=1 Zi/ēi

]
. (5)

Since the interval (5) contains the consistent estimator ψ̂∗
T, the distance between the true estimand ψT and

the nearest point in the sensitivity interval tends to zero. ZSB show that this conclusion holds even if the
nominal propensity score e is replaced by a suitably consistent estimate ê in the definition of En(Λ), which
is important for practical applications as e is typically not known in observational studies.

This simple idea is intuitive enough to explain to any practitioner who is comfortable with IPW and
has been extended to estimands other than ψT. ZSB also consider ψATE and ψATT. Related work by
[27, 28, 26, 34] takes the idea substantially further. [56] applied a similar idea to a different propensity-score-
based estimator and [1, 39, 57] used similar approaches in survey sampling problems.

2.1 Sharpness and data-compatibility

The aforementioned works do not address the asymptotic optimality of the interval [ψ̂−
T,ZSB, ψ̂

+
T,ZSB]. Does

it converge to a limiting set containing all values of ψT compatible with Assumption Λ and no others?
Sensitivity analyses with this asymptotic optimality property are called “sharp” in the partial identification
literature.

Sharpness is important for interpreting the results of a sensitivity analysis. If the primary analysis finds
a positive treatment effect but the bounds associated with a very small value of Λ include zero, one might be
tempted to conclude that the primary analysis is sensitive to unobserved confounding. However, unless the
bounds are known to be sharp, this inference is not warranted even in large samples. Perhaps the bounds
were just too conservative.

Despite its attractive features, the ZSB sensitivity analysis is not sharp. It can be arbitrarily conservative.
To illustrate this, consider a simple joint distribution of observables:

X ∼ N (0, σ2)

Z | X ∼ Bernoulli( 12 )

Y | X,Z ∼ N (X, 1).

(6)

Suppose that a data analyst receives i.i.d. samples (Xi, Yi, Zi) from this distribution and is willing to posit
that Assumption Λ is satisfied with Λ = 2. Let ϕ(·) and zτ denote the density and τ -th quantile of the
standard normal distribution, respectively. The following result, which follows from Theorem 2 in Section
3.1, writes the set of values of ψT compatible with Assumption Λ explicitly in terms of these quantities and
shows that this “partially identified” set is smaller than the limiting ZSB interval.
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Corollary 1. (ZSB is asymptotically conservative)
Let (Xi, Yi, Zi) be i.i.d. samples from the joint distribution (6).
(i) The set of values of ψT compatible with the bound Λ = 2 and the distribution (6) is the interval

[± 3
4ϕ(z2/3)] ≈ [±0.27].

(ii) However, with probability one, [±0.27
√
σ2 + 1] ⊆ [ψ̂−

T,ZSB, ψ̂
+
T,ZSB] for all large n.

The precise meaning of (i) is the following: for any ψT ∈ [± 3
4ϕ(z2/3)], it is possible to construct a

distribution Q for the full data (X,Y (0), Y (1), Z, U) which marginalizes to (6), satisfies Assumption Λ with
Λ = 2, and has EQ[Y (1)] = ψT. On the other hand, for any ψT not in this interval, it is impossible to
construct such a distribution.

Corollary 1 implies that the ZSB interval typically includes many values of ψ which cannot possibly be
reconciled with the data. The explanation for this conservatism is that the odds-ratio bound (2) does not
capture all of the restrictions on the true propensity score e0. Additional information can be found in the
marginal distribution of the observed characteristics. For example, in the context of Corollary 1, consider
the putative propensity score (7).

ē(x, u) =

{
1/3 if x < 0
2/3 if x ≥ 0

(7)

This certainly satisfies the odds-ratio bound (2) — and is therefore a possible value of ē in the ZSB optimiza-
tion problem (5) — but it could not possibly be the true propensity score e0. If it were, we would observe
P (Z = 1|X ≥ 0) = 2

3 , while the observed data distribution P demands that P (Z = 1|X ≥ 0) = 1
2 . Another

way of saying this is that ē does not marginalize to the nominal propensity score:

1/2 = P (Z = 1|X = x)

=

∫
P (Z = 1|X = x, U = u) dP (u|X = x)

̸=
∫
ē(x, u) dP (u|X = x)

=

{
1/3 if x < 0
2/3 if x ≥ 0

.

In short, this choice of ē is allowed in the domain of the ZSB optimization problem but is incompatible with
the distribution of observed data.

This example suggests that it should be possible to improve upon the ZSB bounds by only optimizing
over the subset of En(Λ) which is “data compatible.” However, this is easier said than done, because the
observed data distribution actually imposes an infinite number of constraints on putative propensity scores
ē. For example, the true e0 “balances” all integrable functions h : X → R:

E[h(X)Z/e0(X,U)] = E[h(X)E[Z|X,U ]/e0(X,U)]

= E[h(X)e0(X,U)/e0(X,U)]

= E[h(X)].

(8)

Every such h gives rise to a testable “balancing constraint” (9) which can be used to rule out incompatible
values of ē.

En[h(X)Z/ē]

En[Z/ē]
≈ E[h(X)] (9)

In other words, any sharp sensitivity analysis must contend with an infinite number of constraints, which is
typically computationally intractable [6, 14]. Previous works have considered relaxing these constraints by
balancing only a finite set of functions [56, 57], but the resulting bounds are generally not sharp.

While this paper proceeds under the “superpopulation” model of causal inference, the idea that observable
quantities can constrain unobserved variables can also be applied in the “finite population” model. See [57]
for an application of this idea to partial identification in survey sampling problems.

5



3 Partial identification results

In this section, we show that at the population level, it is possible to characterize the sharp bounds for
ψ0 ∈ {ψT, ψC, ψATT, ψATE} without ignoring or relaxing any of the infinitely many balancing constraints on
the true propensity score. We apply these partial identification results to finite-sample sensitivity analysis
in Section 4.

To state these results formally, we need a few pieces of additional notation. Recall that Assumption Λ
requires the true propensity score e0(X,U) to satisfy the following odds-ratio bound:

Λ−1 ≤ e0(X,U)/[1− e0(X,U)]

e(X)/[1− e(X)]
≤ Λ.

Therefore, it is natural to define E∞(Λ) to be the set of all random variables Ē which satisfy the same
condition:

E∞(Λ) :=

{
Ē : Λ−1 ≤ Ē/(1− Ē)

e(X)/(1− e(X))
≤ Λ with probability one

}
. (10)

This can be viewed as the “population” version of the ZSB constraint set En(Λ).
Additionally, we define the conditional distribution function F (y|x, z) and quantile function Qt(x, z) by:

F (y|x, z) = P (Y ≤ y | X = x, Z = z)

Qt(x, z) = inf{q ∈ R : F (q|x, z) ≥ t}.

Since these functions only refer to observed quantities, they are identified from the observed-data distribution.

3.1 Partial identification via quantile balancing

Our first partial identification result shows that to compute optimal bounds for ψT, the infinitely-many
balancing constraints described in Section 2.1 can actually be reduced to a single constraint. In particular,
it suffices to minimize/maximize the function Ē 7→ E[Y Z/Ē] over the set of putative propensity scores
Ē ∈ E∞(Λ) that “balance” a particular conditional quantile of Y .

Theorem 1. (Optimal bounds for ψT)
For any Λ ≥ 1, the set of values of ψT compatible with the observed data distribution and Assumption Λ is
a closed interval [ψ−

T , ψ
+
T ]. Moreover, if we define τ = Λ

Λ+1 , then the interval endpoints solve (11) and (12).

ψ−
T = min

Ē∈E∞(Λ)
E[Y Z/Ē] subject to E[Q1−τ (X, 1)Z/Ē] = E[Q1−τ (X, 1)] (11)

ψ+
T = max

Ē∈E∞(Λ)
E[Y Z/Ē] subject to E[Qτ (X, 1)Z/Ē] = E[Qτ (X, 1)]. (12)

We will highlight a few important takeaways from this theorem. First, if one adds additional balancing
constraints of the form E[h(X)Z/Ē] = E[h(X)] in (11) and (12), the value of these problems will not change.
Thus, for the purposes of computing population-level bounds, the quantile balancing constraints in Theorem
1 capture all the information in the observed data. Second, the fact that only a single conditional quantile
appears in each of the sharp bounds for ψT reflects a special advantage of the marginal sensitivity model.
For alternative sensitivity assumptions, sharp bounds often involve distinct quantiles Qτ(x) for each covariate
level [33, 35], complicating estimation by potentially requiring estimates of the entire conditional quantile
process [36, 53]. Third, this result shows that the ZSB sensitivity analysis for IPW can only be sharp when
the conditional quantiles of Y do not depend on X at all, and can therefore be refined outside pathological
cases. AIPW-based variants of the ZSB sensitivity analysis will generally refine the IPW bounds since some
of the variability in the quantiles of Y will be absorbed by the regression function. We discuss AIPW
sensitivity analysis in Section 4.2.
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We can extend the theorem to other estimands. To bound ψC, exchange the labels “treated” and “control”
and apply Theorem 1. Sharp bounds on ψC can be translated into sharp bounds on ψATT using the relation

ψATT = E[Y ]−ψC

P (Z=1) .

Corollary 2. (Optimal bounds for ψC and ψATT)
In the setting of Theorem 1, the partially identified set for ψC is the interval [ψ−

C , ψ
+
C ], where the interval

endpoints solve (13) and (14).

ψ−
C = min

Ē∈E∞(Λ)
E[Y 1−Z

1−Ē ] subject to E[Q1−τ (X, 0)
1−Z
1−Ē ] = E[Q1−τ (X, 0)] (13)

ψ+
C = max

Ē∈E∞(Λ)
E[Y 1−Z

1−Ē ] subject to E[Qτ (X, 0) 1−Z1−Ē ] = E[Qτ (X, 0)] (14)

The partially identified set for ψATT is the interval [ψ−
ATT, ψ

+
ATT], where ψ

∓
ATT =

E[Y ]−ψ±
C

P (Z=1) .

Sharp bounds for ψATE can be obtained by subtracting sharp bounds for ψT and ψC. Equivalently, these
bounds can be obtained by solving optimization problems with two quantile balancing constraints. Although
this result is superficially similar to Theorem 1 and Corollary 2, its proof requires a novel construction, which
we discuss in Section 3.3.

Theorem 2. (Optimal bounds for ψATE)
For any Λ ≥ 1, the set of values of ψATE compatible with the observed data distribution and Assumption Λ
is a closed interval [ψ−

ATE, ψ
+
ATE] where ψ

−
ATE = ψ−

T − ψ+
C and ψ+

ATE = ψ+
T − ψ−

C .

In certain special cases, the partially identified set for ψATE can be computed more explicitly. These
explicit bounds are useful for gaining intuition about the main factors that make a causal estimate more or
less robust to unobserved confounding. Corollary 3, which is a corollary of our later work, gives such bounds
in the Gaussian outcome model (15).

X ∼ PX

Z | X ∼ Bernoulli(e(X))

Y | X,Z ∼ N (µ(X,Z), σ2(X)).

(15)

Corollary 3. (Simpler bounds for Gaussian data)
Suppose the observed-data distribution has the factorization (15), with 0 < e(X) < 1 almost surely and
E[|µ(X,Z)|] < ∞. Let ψATE = E[µ(X, 1) − µ(X, 0)] be the nominal ATE. Then the partially identified set
for the ATE under Assumption Λ is:

[ψ−
ATE, ψ

+
ATE] = [ψATE ± Λ2−1

Λ ϕ(Φ−1( Λ
Λ+1 ))E[σ(X)]]. (16)

Here, ϕ and Φ are the standard normal density and distribution function, respectively.

For a fixed bound Λ on the degree of unobserved confounding, the formula (16) shows that two key
features map the observed data distribution to robustness. The first is the magnitude of the nominal ATE:
all else equal, larger nominal effects are more robust. The second is the average noise level E[σ(X)]: the
better the measured variables predict the outcome, the less unobserved confounding can affect our estimates.
In the extreme case where X and Z perfectly predict Y , then the ATE remains point-identified no matter
how large Λ is, as long as overlap holds. These insights are not specific to the marginal sensitivity model.
In alternative sensitivity models, they have also been observed by [47, 22], [11], and others. [47, 22, 11], and
others.

3.2 Data-compatible propensity scores

Although the qualitative implications of Corollary 3 are plausible, we nevertheless find the quantile balancing
formulas of Section 3.1 to be counterintuitive. After all, it is certainly not true that every random variable
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Ē ∈ E∞(Λ) satisfying E[Qτ (X, 1)Z/Ē] = E[Qτ (X, 1)] could plausibly be the true propensity score e0(X,U).
Indeed, the constraints of the quantile-balancing optimization problems do not even enforce that E[Z/Ē] = 1.
Our intuition for why the ZSB procedure is conservative suggests the quantile balancing formulas should be
conservative as well.

To explain how these results are possible, we begin by characterizing which random variables Ē could
plausibly be the true propensity score e0(X,U). The calculation (8) indicates that Ē should at least satisfy
E[h(X)Z/Ē] = E[h(X)] for all integrable h, or equivalently, E[Z/Ē|X] = 1. Proposition 1 shows that for the
purposes of bounding ψT, this is actually the only constraint on Ē implied by the distribution of observables.
Similar results appear in [8, 43, 56, 17, 20, 15, 60].

Proposition 1. (Characterizing data-compatible propensity scores)
For any random variable Ē ∈ E∞(Λ) satisfying E[Z/Ē|X] = 1, there is a distribution Q for (X,Y (0), Y (1), Z, U)
with the following properties:
(i) The distribution of the observables (X,Y, Z) is the same under P and Q.
(ii) Q satisfies Assumption Λ.
(iii) EQ[Y (1)] = EP [Y Z/Ē].

In short, this result says that E[Y Z/Ē] is a plausible value of ψT as long as E[Z/Ē|X] = 1. It is not hard
to show that the converse also holds: if ψ is a plausible value of ψT, then ψ = E[Y Z/Ē] for some random
variable Ē satisfying E[Z/Ē|X] = 1. As a result, the optimal bounds for ψT can be obtained by solving the
variational problems in Corollary 4.

Corollary 4. The partially identified set for ψT is an interval whose endpoints solve:

ψ−
T = min

Ē∈E∞(Λ)
E[Y Z/Ē] subject to E[Z/Ē|X] = 1 (17)

ψ+
T = max

Ē∈E∞(Λ)
E[Y Z/Ē] subject to E[Z/Ē|X] = 1 (18)

Even though the variational problems (17) and (18) can be infinite-dimensional optimization problems
with infinitely-many constraints, they have several nice features that enable them to be solved explicitly.
Some straightforward algebraic manipulation shows that the problem (18) can be written as:

maximize E[E[Y Z/Ē|X]]

subject to E[Z/Ē|X] = 1

and 1 + 1−e(X)
e(X) Λ−1 ≤ 1/Ē ≤ 1 + 1−e(X)

e(X) Λ.

(19)

Not only is this problem linear in the decision “variable” 1/Ē, it also separates across levels of X. Therefore,
it suffices to separately solve (20) for each x ∈ X .

maximize E[Y Z/Ē|X = x]

subject to E[Z/Ē|X = x] = 1

and 1 + 1−e(x)
e(x) Λ−1 ≤ 1/Ē ≤ 1 + 1−e(x)

e(x) Λ

(20)

The problem (20) requires us to maximize one expectation subject to an equality constraint on another
expectation. This resembles the problem solved by the Neyman-Pearson lemma, and in fact is a special case
of the generalization due to [12]. The optimization problems posed in Theorem 1 also fall in this class. It
turns out that both of these problems have a common solution, given in Proposition 2.

Proposition 2. (Formulas for the worst-case propensity scores)
There exist Ē−, Ē+ ∈ E∞(Λ) satisfying E[Z/Ē−|X] = E[Z/Ē+|X] = 1 and also (21) and (22).

1/Ē− =

{
1 + 1−e(X)

e(X) Λ+1 if Y < Q1−τ (X, 1)

1 + 1−e(X)
e(X) Λ−1 if Y > Q1−τ (X, 1)

(21)
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1/Ē+ =

{
1 + 1−e(X)

e(X) Λ+1 if Y > Qτ (X, 1)

1 + 1−e(X)
e(X) Λ−1 if Y < Qτ (X, 1)

(22)

Further, Ē− solves both (11) and (17), and Ē+ solves both (12) and (18).

The form of the propensity score Ē+ gives us insight into the confounding structure which maximizes
ψT: in the worst case, all observations with “high” values of Y are unlikely to be treated and thus receive
large propensity weight, while all observations with “low” values of Y are likely to be treated and thus
receive small propensity weight. The cutoff between high and low is chosen to satisfy the data-compatibility
condition E[Z/Ē+|X] = 1.

This argument presented in this section extends immediately to ψC by swapping treatment and control
labels, extends to ψATT by the argument given in Section 3.1, and can extend to other sensitivity models of
the form emin(X) ≤ e0(X,U) ≤ emax(X) by modifying the constraints of (20).

3.3 Data compatibility for the ATE

To extend the argument from Section 3.2 to the ATE requires additional care. Although ψ+
ATE = ψ+

T − ψ−
C

is certainly a valid upper bound for the partially identified set for ψATE, it is not obviously a sharp one.
Proposition 1 only implies that there exists a distribution Q matching the observed-data distribution which
has EQ[Y (1)] = ψ+

T and another distribution Q′ which has EQ′ [Y (0)] = ψ−
C , but these distributions need not

be the same. In other words, the two bounds may not be simultaneously achievable.
Theorem 2 indicates that the worst-case bounds on the counterfactual means are simultaneously achiev-

able in the marginal sensitivity model. This is a surprising result, given that simultaneous achievability is
not expected to hold in the closely-related Rosenbaum sensitivity model. In that model, [58] derived sharp
bounds on ψT and ψC but required an extra symmetry assumption on the distribution of potential outcomes
to establish sharpness of the resulting ATE bounds.

The key to our bounds on ψATE is the following claim, which strengthens Proposition 1.

Proposition 3. (Simultaneous achievability)
For any random variable Ē ∈ E∞(Λ) satisfying E[Z/Ē|X] = E[(1−Z)/(1−Ē)|X] = 1, there is a distribution
Q for the full data (X,Y (0), Y (1), Z, U) with the following properties:
(i) The distribution of the observables (X,Y, Z) is the same under P and Q.
(ii) Q satisfies Assumption Λ.
(iii) EQ[Y (1)] = EP [Y Z/Ē] and EQ[Y (0)] = EP [Y (1− Z)/(1− Ē)].

Unlike Proposition 1, this result does not follow from the existing data-compatibility characterizations
of [8, 43, 56, 60] and instead requires an original construction. Given this result, one can derive Theorem 2
as a consequence of Theorem 1 and Corollary 2.

4 Sensitivity analysis

In this section, we give our proposals for translating the population-level partial identification results of
Section 3 into practical sensitivity analyses. Our main proposal, which we call the quantile balancing method,
conducts a sensitivity analysis for IPW estimators by modifying the ZSB proposal to incorporate the sufficient
constraints derived in Section 3.1. We also discuss extensions of our sensitivity analysis to the AIPW
estimator of [44] which are simpler to implement but only sharp under homoscedasticity.

Throughout this section, we take Λ ≥ 1 to be fixed and set τ = Λ/(Λ + 1).
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4.1 Sensitivity analysis via quantile balancing

We begin by describing our IPW sensitivity analysis for the average treated potential outcome. Theorem 1
implies that the largest value of ψT compatible with Assumption Λ solves the optimization problem (23):

ψ+
T = max

Ē∈E∞(Λ)

E[Y Z/Ē]

E[Z/Ē]
s.t.

(
E[Qτ (X, 1)Z/Ē]

E[Z/Ē]

)
=

(
E[Qτ (X, 1)Z/e(X)]

E[Z/e(X)]

)
. (23)

In the above display, we have included an additional constraint E[Z/Ē] = E[Z/e(X)] which motivates our
finite-sample procedure without affecting the optimization problem value.

Our proposal is to estimate ψ+
T by replacing all of the unknown quantities in (23) with empirical coun-

terparts. We estimate ψ−
T by following the same principle. To translate these estimates into confidence

intervals, we employ the same simple percentile bootstrap scheme as ZSB.
We will be concrete about what optimization problem we are proposing to solve. Let Q̂τ (x, z) be an

estimate of the conditional quantile function of Y obtained by some kind of quantile regression (e.g. [2, 31,
37, 55]). Let ê be the data analyst’s estimate of the nominal propensity score e from their primary analysis.

We define ψ̂+
T as the solution to the empirical maximization problem (24).

ψ̂+
T = max

ē∈En(Λ)

En[Y Z/ē]
En[Z/ē]

s.t.

(
En[Q̂τ (X, 1)Z/ē]

En[Z/ē]

)
=

(
En[Q̂τ (X, 1)Z/ê(X)]

En[Z/ê(X)]

)
(24)

The lower bound ψ̂−
T is defined similarly, but with maximization replaced by minimization and Q̂τ (x, z)

replaced by another quantile estimate Q̂1−τ (x, z). We call ψ̂+
T and ψ̂−

T the quantile balancing bounds for ψT.
Two features of this proposal require some explanation. The first feature to explain is the inclusion

of the constraint En[Z/ē] = En[Z/ê(X)] in (24). At the population level, Theorem 1 shows that only the
constraint E[Qτ (X, 1)Z/Ē] = E[Qτ (X, 1)Z/e(X)] is relevant. However, in finite samples, this additional
constraint improves robustness when Q̂τ is an inaccurate estimate of Qτ and also simplifies the associated
computation. The second feature to explain is why the right-hand side of the constraints in (24) have
an “IPW” form (i.e. En[Q̂τ (X, 1)Z/ê(X)]) rather than a “sample average” form (i.e. En[Q̂τ (X, 1)]). If
En[Q̂τ (X, 1)Z/ê(X)] ̸= En[Q̂τ (X, 1)], then a sample average version of (24) may have no feasible propensities.
With the IPW form, ēi = ê(Xi) is always feasible.

Now that we have explained our proposed sensitivity analysis, we will collect several immediate properties
of the quantile balancing bounds:

(i) When Λ = 1 (i.e. no confounding is allowed), the quantile balancing bounds collapse to the usual IPW
estimate of ψT under unconfoundedness.

(ii) The quantile balancing bounds are sample bounded, i.e. mini Yi ≤ ψ̂−
T ≤ ψ̂+

T ≤ maxi Yi.
(iii) The quantile balancing bounds are always a subset of the ZSB bounds and, outside of knife-edge cases,

are a strict subset.
(iv) The optimization problem (24) is convex and can be solved efficiently. In fact, it reduces to a standard

quantile regression problem. See Appendix Afor implementation details.

The property (i) leads us to call quantile balancing a “sensitivity analysis for IPW.” One can also apply
quantile balancing to unstabilized IPW estimators at the cost of properties (ii) and (iii). See Appendix B
for computational details, including for Augmented IPW estimators.

The quantile balancing idea extends easily to other causal estimands. To compute bounds for ψC, one
only needs to exchange the definitions of “treated” and “control” and solve the same optimization problem.
Subtracting the bounds for ψT and ψC gives bounds for ψATE, and bounds for ψATT follow from a similar
principle (see Appendix A for the exact formula).

To form confidence intervals based on quantile balancing, we follow [60] and propose using the percentile

bootstrap. If [ψ̂−
b , ψ̂

+
b ] are quantile balancing bounds estimated in the bth of B bootstrap samples, we report

the quantile balancing 1− α confidence interval as:

CI(α) = [Qα/2({ψ̂−
b }b∈[B]), Q1−α/2(ψ̂

+
b }b∈[B])]. (25)
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As is standard for bootstrap-based IPW inference, we require re-estimating the nominal propensity score
separately in each bootstrap replication. That requirement does not extend to the conditional quantiles.
While the conditional quantiles can be re-estimated within bootstraps, our inference results will also apply
if they are taken from the main dataset. This helps keep inference computationally tractable.

4.2 Implications for AIPW sensitivity analysis

The quantile balancing sensitivity analysis described above requires the data analyst to perform several
quantile regressions. Our partial identification results imply that, in certain “additive-noise” data generating
processes, a data analyst whose primary analysis was conducted using the AIPW estimator can perform sharp
sensitivity analysis without performing any quantile regressions.

To explain how, we begin by describing the modeling assumption. Suppose the observed outcome Y has
the following signal-plus-noise representation:

Y = µ(X,Z) + ϵ with E[ϵ] = 0, ϵ |= (X,Z). (26)

Such models frequently arise in the regression applications [see, e.g. 18, Chapter 3] and fit quite well in the
real-data example we present in Section 5.2 below.

The additive-noise assumption (26) implies that the conditional quantiles of the residuals ϵ are constant.
In particular, the assumption implies Qτ (x, z) = µ(x, z) + Qτ (ϵ), where Qτ (ϵ) is the τ -th quantile of the
noise. Therefore, Theorem 1 and some algebra imply that the sharp upper bound for ψT has the following
formula:

ψ+
T = max

Ē∈E∞(Λ)

{
E[µ(X, 1) +

E[(Y − µ(X, 1))Z/Ē]

E[Z/Ē]

}
s.t. E[Z/Ē] = E[Z/e(X)]. (27)

Similar formulas can be derived for ψ−
T , ψ

+
C , ψ

−
C . This formula is convenient after an AIPW primary analysis,

which requires estimates of all the nuisance parameters in this equation.
A natural estimate of ψ+

T is the finite-sample analogue of (15).

ψ̂+
T,AIPW = max

ē∈En(Λ)

{
En[µ̂(X, 1)] +

En[(Y − µ̂(X, 1))Z/ē]

En[Z/ē]

}
s.t. En[Z/ē] = En[Z/ê(X)] (28)

The estimated bound ψ̂+
T,AIPW grows with Λ and recovers the original (stabilized) AIPW estimator when

Λ = 1. One can also not divide by En[Z/ē] in (28) to recover the unstabilized AIPW estimator at Λ = 1.
The estimator (28) slightly modifies the proposal in Section 6.2 of [60] to include the balancing constraint

En[Z/ē] = En[Z/ê(X)]. In theory, this constraint is necessary to achieve sharpness in the additive-noise
model (26). However, the simulations presented in Section 5 find that when the additive-noise model holds,
this constraint scarcely refines the stabilized point estimates while somewhat degrading the coverage of
bootstrap confidence intervals.

4.3 Theoretical properties

We now state some theoretical properties of the quantile balancing bounds [ψ̂−, ψ̂+] which apply when the
outcome Y has a continuous distribution. In short, the bounds are sharp when quantiles are estimated
consistently and are valid even when quantiles are estimated inconsistently. Moreover, the percentile boot-
strap yields valid confidence intervals if standard IPW inference conditions are satisfied and quantiles are
estimated parametrically.

To obtain these results, we need a few conditions. The first condition collects some standard IPW
consistency requirements which we expect the data analyst to have already assumed in their primary analysis.

Condition 1. (IPW assumptions)
The nominal propensity score e satisfies ε ≤ e(X) ≤ 1−ε with probability one for some ε > 0. The estimated
nominal propensity score ê(·) ≡ ê(·, {Xi, Zi}i≤n) is uniformly consistent, and the variance of Y is finite.
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The second condition requires that the outcome Y has a bounded conditional density which is positive
near the relevant conditional quantiles. This is a common identification condition for quantile regression
[2, 5]. However, it means our theoretical guarantees do not apply when Y is discrete.

Condition 2. (Density)
The conditional distribution of Y | X,Z has a uniformly bounded density f(y|x, z). For each (x, z) ∈
X × {0, 1}, the map y 7→ f(y|x, z) is continuous and positive near Q1−τ (x, z) and Qτ (x, z).

Finally, we make some assumptions about how the quantiles are estimated. For the standard linear
quantile regression method of [31], one only needs to check that the regressors in the quantile regression
have finite variance. We cover generic (possibly nonlinear) methods by requiring sample splitting to avoid
overfitting. The specific form of sample splitting analyzed in our proofs is “cross-fitting” [52, 41, 10], but
leave-one-out or out-of-bag quantile estimates perform similarly in simulations. Based on our practical
experience, we recommend using some kind of sample splitting even when the quantile model is linear.

Condition 3. (Quantile estimates)
For each t ∈ {1− τ, τ}, one of the following holds for the estimated quantile function Q̂t:

(i) Q̂t(x, z) = β̂t(z)
⊤h(x) for some fixed “features” hj(X) with finite variance.

(ii) Q̂t(x, z) is estimated using cross-fitting and satisfies Condition N in the supplementary materials.

Condition 3 is essentially “algorithmic,” and neither (i) nor (ii) impose any accuracy requirements on the
estimated conditional quantiles. The appendix conditions in (ii) are technical to state but very mild. Under
Conditions 1 and 2, they are satisfied by quantile estimates based on nearest-neighbors [55], kernels [7], and
random forests [2, 37].

Under these conditions, we have the following result on the asymptotic sharpness of the quantile balancing
bounds.

Theorem 3. (Sharpness and robustness)
For any ψ0 ∈ {ψT, ψC, ψATT, ψATE}, let [ψ−, ψ+] be its partially identified interval under Assumption Λ and

let [ψ̂−, ψ̂+] be the corresponding quantile balancing interval. Assume Conditions 1, 2, and 3.

(i) If the quantile regression estimates are consistent, then ψ̂− p−→ ψ− and ψ̂+ p−→ ψ+.

(ii) Even if the quantile models are misspecified, we still have ψ̂− ≤ ψ− + an and ψ+ − bn ≤ ψ̂+, where
an = oP (1) and bn = oP (1).

The same conclusions hold for the AIPW-based bounds introduced in Section 4.2 when the outcome
regression is estimated by linear regression, i.e. sharpness under an additive-noise model and validity in
general. However, while AIPW is doubly-robust under unconfoundedness, the validity of the corresponding
AIPW quantile balancing bounds relies on correct specification of the nominal propensity score.

The result (ii) shows that even when quantiles are not estimated consistently, the quantile balancing
bounds are still valid; we will offer some intuition on why this novel robustness property holds. At the
population level, the worst-case propensity score Ē+ defined in Proposition 2 “balances” all integrable
function of X, so intuitively, we should expect that it “nearly” balances the estimated quantile function
Q̂τ (·, 1) in finite samples even if Q̂τ (·, 1) is not particularly close to Qτ (·, 1). That suggests a vector of
propensities very close to the true worst-case propensity vector will belong to the feasible set En(Λ). Since

the quantile balancing upper bound ψ̂+
T is defined as a maximum over the feasible set, it will be at least as

large as a quantity close to ψ+
T . This roughly explains why validity holds even under misspecification.

The validity of the confidence interval (25) follows under stronger parametric assumptions. We prove
an inference result assuming the nominal propensity score is estimated by a correctly-specified parametric
model and the conditional quantiles are estimated by a (potentially misspecified) parametric model.

Theorem 4. (Inference)
Let [ψ−, ψ+] be as in Theorem 3, and let CI(α) be as in (25). Suppose Conditions 1, 2, and 3.(i) are
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satisfied, and also that the nominal propensity score is estimated by a regular parametric model (e.g. logistic
regression). Then we have

lim inf
n→∞

P([ψ−, ψ+] ⊆ CI(α)) ≥ 1− α (29)

for any α ∈ (0, 1).

We have found that these confidence intervals can under-cover the identified set in finite samples when
the quantiles are correctly specified. In our simulations, the use of cross-fit conditional quantile estimates
largely resolves the issue with minimal effect on point estimates, so we advocate for the use of such estimators
in practice. Although we do not have theoretical support for the confidence interval CI(α) when quantiles
are estimated by a nonlinear model, we find that approach performs reasonably well in the simulations of
Section 5 as long as cross-fit quantiles are used.

5 Numerical examples

In this section, we illustrate the finite-sample performance of our proposed sensitivity analyses on several
simulated datasets and one real-data example.

5.1 Simulated data

We consider two data-generating processes (DGPs) in our simulated examples. The two DGPs differ in the
conditional distribution of Y given (X,Z), but otherwise can be described as follows:

X ∼ Uniform([−1, 1]5)

Z | X ∼ Bernoulli

(
1

1+exp(−
∑5

j=1Xj/
√
5)

)
Y | X,Z ∼ N (µ(X), σ2(X)).

(30)

In the first DGP, we use µ(x) = x1 + · · ·+ x5 and σ(x) = 1. In the second DGP, we use µ(x) = 3
2 sign(x1) +

sign(x2) and σ(x) = 2 + sign(x3) + sign(x4). The estimand of interest is the ATE and we fix Λ = 2, i.e.
unobserved confounders can double or halve the odds of treatment.

We compare five methods for obtaining bounds on the partially identified set:

1. QB-Linear applies the quantile balancing method of Section 4 with quantiles estimated using linear
quantile regression on X1, . . . , X5.

2. QB-Forest applies quantile balancing with quantiles estimated using the random forest method from
[2].

3. ZSB applies the main IPW method from [60], described in Section 2.1.
4. ZSB-AIPW applies the AIPW-based method from Section 6.2 of [60], described in Section 4.2. This

requires an estimate of the outcome model µ(X,Z) = E[Y |X,Z]. We use a situationally-appropriate
outcome model, linear regression in DGP1 and random forest regression in DGP2.

5. AIPW+1 applies the AIPW-based method introduced in Section 4.2. We call this AIPW+1 because it
refines ZSB-AIPW to incorporate an additional “one-balancing” constraint En[Z/ē] = En[Z/ê(X)].

All methods estimate the nominal propensity score by logistic regression. We use 5-fold cross-fitting in all
of our quantile regressions. We do not re-estimate quantiles or random forest models within bootstraps.

Figure 1 shows the distribution of upper and lower bound point estimates from each of these five methods,
estimated using 2,000 simulations with n = 1, 000 observations each. Simulations at other sample sizes are
presented in Appendix B. Dashed lines indicate the true partially identified region. The results conform to
the asymptotic predictions of Section 4: (i) when the quantile models are “correctly specified,” the quantile
balancing point estimates are nearly unbiased; (ii) under misspecification, the range of QB point estimates is
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too wide rather than too narrow; (iii) the ZSB range of point estimates is too wide in both cases; and (iv)
AIPW-based methods give nearly-sharp bounds in the additive-noise DGP1 but conservative bounds in the
heteroscedastic DGP2. We also find that the +1 constraint in AIPW+1, which is necessary for sharpness in
theory, has minimal practical impact in either DGP.
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Figure 1: Boxplots of the ATE upper and lower bound point estimates for both DGPs and all considered
methods. The dashed line indicates the boundary of the true partially identified set. In DGP1, all methods
but ZSB are correctly specified and give reasonably accurate bounds. In DGP2, the Forest method is well-
suited to the piecewise-constant conditional quantiles and gives the most accurate bounds.

Figure 2 shows the coverage for 95% bootstrap confidence intervals based on each of the five methods. In
DGP1, both quantile balancing methods have nearly nominal coverage, but AIPW-based methods undercover
and the +1 constraint exacerbates the undercoverage. In DGP2 the QB-Forest method achieves nearly
nominal coverage, while all other methods overcover. The ZSB method overcovers for both DGPs.

5.2 Real data

In this section, we apply our proposed sensitivity analysis to a subsample of data from the 1966-1981 National
Longitudinal Survey (NLS) of Older and Young Men. We wish to estimate the impact of union membership
on wages. Specifically, we consider the ATE of union membership on log wages. For illustrative reasons,
we focus on the 1978 cross-section of Young Men and restrict our attention to craftsmen and laborers not
enrolled in school. Our estimates are thus based on a sample of 668 respondents with measurements of
wages, union membership, and eight covariates.

For our primary analysis, we use IPW to adjust for baseline imbalances in covariates between union and
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Figure 2: The coverage of nominal level 95% bootstrap confidence intervals based on five different methods.
Estimates are based on 2, 000 simulations each with n = 1, 000 observations. The error bars are binomial
confidence intervals for the true coverage probability.

nonunion samples. Table 1 reports the covariate balance between union and nonunion samples before and
after weighting by the (estimated) inverse propensity score. On several important characteristics, inverse
propensity weighting dramatically improves balance across the two samples.

Unweighted Weighted
Covariate Union Nonunion Union Nonunion

Age 30.1 30.0 30.0 30.0
Black 24% 24% 23% 24%

Metropolitan 74% 57% 66% 65%
Southern 32% 53% 42% 42%
Married 78% 75% 76% 76%

Manufacturing 42% 32% 37% 38%
Laborer 23% 15% 18% 18%

Education 12.2 11.7 12.1 12.0

Table 1: Covariate means among the nonunion and union subsamples, along with the means in the weighted samples.
In red, we highlight particularly large imbalances. In the weighted samples, propensity weights are estimated using
logistic regression.

The IPW point estimate of the ATE is 0.23 with an associated 90% confidence interval of [0.18, 0.27].
Thus, our primary analysis concludes that union membership has a positive effect on wages, at least on
average among craftsmen and laborers. Both the point estimate and the confidence interval are in agreement
with prior literature studying the same problem using cross-sectional data. See [24, 25] for overviews. An
AIPW-based primary analysis gives the same point estimate and confidence interval, up to rounding.

[16], [38], and many other economists have argued that cross-sectional estimates of the union premium
overestimate the true causal effect because higher-skill workers are simultaneously more likely to be selected
for union jobs and earn higher wages. Here, “skill” refers to an unobserved confounder which is only partially
captured by the measured covariates. Is it plausible that the positive effect we find in the IPW analysis
could be entirely due to selection on skill? A sensitivity analysis may help address this question.

Figure 3 reports point estimate ranges and 90% bootstrap confidence intervals from quantile balancing,
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the ZSB-IPW method, and the ZSB-AIPW method for several values of the sensitivity parameter Λ. For
quantile balancing, we estimate conditional quantiles using linear quantile regression with five-fold cross
fitting. For AIPW, we use linear regression for the outcome model.
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Figure 3: Point estimate ranges and 90% bootstrap confidence intervals for the ATE in the NLS dataset.
For the quantile balancing method, conditional quantiles are estimated using the linear quantile regression
method of [31], with five-fold cross-fitting.

All three sensitivity analyses show that the positive effect found in the primary analysis is fairly robust to
unobserved confounding, but quantile balancing and ZSB-AIPW refine the baseline ZSB-IPW interval. Even
if the odds of union membership for “skilled” workers were nearly double (Λ = 1.9) the odds for “typical”
workers with the same observed covariates, the quantile balancing and AIPW sensitivity analyses analysis
would still find a statistically significant positive treatment effect. Meanwhile, when Λ = 1.8, the ZSB
confidence intervals already include the null. In this application, quantile balancing only slightly refines the
ZSB range. Moreover, quantile balancing and ZSB-AIPW yield very similar ranges and confidence intervals.
This is to be expected from the discussion in Section 4.2, as an “additive noise” model appears quite plausible
in this application.

To put these sensitivities in context, we follow [29] and compute the degree to which the (estimated) odds
of union membership could change if measured confounders were omitted from the dataset. Caveats to this
approach and more sophisticated empirical calibration strategies are discussed in [21, 59, 11]. No measured
confounders except Laborer and South were able to nearly double or halve the odds of union membership
for any respondent. We interpret these results as showing that the qualitative conclusions of the primary
analysis are fairly robust to unobserved confounding by skill.

Incidentally, longitudinal estimates of union wage effects — which control for individual-specific effects like
“skill” — come to similar conclusions as the one suggested by our sensitivity analysis. Although treatment
effect estimates from longitudinal studies are generally smaller than those from cross-sectional studies, they
still find evidence in favor of the “union premium” [9, 24, 16].

6 Conclusion

We have shown that quantile balancing — a simple modification of the popular ZSB sensitivity analysis —
is feasible, robust, and sharp. This new sensitivity analysis for IPW is based on novel partial identification
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results for [56]’s marginal sensitivity model.
We will point to several interesting directions for future work. While our partial identification results

focus on counterfactual means and a few treatment effects, it should be possible to extend our partial
identification results to more complex estimands of the type considered in [26, 28, 27, 29, 34]. Perhaps a
similarly compact sensitivity analysis could even apply to dynamic treatment regimes. Future work could
also investigate data-compatibility in the finite population model. In addition, while our IPW identification
arguments generalize to any sensitivity assumption that only restricts the propensity score in a pointwise
fashion (i.e. emin(x) ≤ e0(x, u) ≤ emax(x)), the practicality of our sensitivity analysis and its theoretical
properties rely on the marginal sensitivity model quite heavily. It would be interesting to see if a practical
and sharp sensitivity analysis could be developed for other sensitivity assumptions in this class.
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A Appendix: implementation

This appendix describes how the quantile balancing sensitivity analysis can be implemented using standard
solvers for linear quantile regression (A.1), e.g. the quantreg package in R or the qreg function in Stata.
It also gives the formulas for the ATT bounds (A.2), which were omitted from the main text, and offers a
discussion of formulas for AIPW estimators (A.3).

Throughout this appendix, Λ ≥ 1 is fixed and we set τ = Λ/(Λ + 1). We also use the notation En[·] as
shorthand for the average 1

n

∑n
i=1[·]i.

A.1 Computing bounds with weighted quantile regression

We begin by considering computation of ψ+
T . We consider the more general optimization problem (31) for

some function g : X → Rk containing an “intercept.” In the main text, we assumed g(x) = (1, Q̂τ (x, 1)).

max
ē∈En(Λ)

En[Y Z/ē]
En[Z/ê(X)]

subject to En[g(X)Z/ē] = En[g(X)Z/ê(X)]. (31)

Let ρτ (u) = u(τ − I{u < 0}) be the quantile regression “check” function [30, 31] and define the weighted
linear quantile regression objective as:

Ln(γ) := En[ρτ (Y − γ⊤g(X))Z 1−ê(X)
ê(X) ]. (32)

The following proposition shows that any minimizer of Ln can be used to compute the solution of (31).

Lemma 1. Suppose ê(Xi) ∈ (0, 1) for all i, let γ̂ minimize the weighted quantile regression objective Ln and
let V̂i = sign(Yi − γ̂⊤g(X)). Then the optimal objective value in the quantile balancing problem (31) is:

En[(Y − γ̂⊤g(X))Z(1 + ΛV̂ (1− ê(X))/ê(X))] + En[γ̂⊤g(X)Z/ê(X)]

En[Z/ê(X)]
.
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Proof. See the supplementary materials.

This same approach can be used to compute a lower bound for ψT by replacing Y with −Y , applying
Lemma 1, and then negating the answer. Upper and lower bounds for ψC can then be obtained by replacing
Z by 1− Z and ê(X) by 1− ê(X) and then applying the same procedure. Subtracting the upper and lower
bounds for ψT and ψC as in Theorem 2 gives bounds on ψATE.

A.2 Bounds for the ATT

Next, we describe the standard quantile balancing bounds for ψATT. Let Ȳ (1) be the average value of Yi
among treated observations. We define the quantile balancing upper bound for the ATT as the solution to
the optimization problem (33), where g+(x) = (1, Q̂1−τ (x, 0)).

ψ̂+
ATT = max

ē∈En(Λ)
Ȳ (1)−

∑
Zi=0 Yi

ēi
1−ēi∑

Zi=0
ēi

1−ēi
s.t.

∑
Zi=0

g+(Xi)
ēi

1− ēi
=
∑
Zi=0

g+(Xi)
êi

1− êi
(33)

The lower bound ψ̂−
ATT is defined similarly, but with maximization replaced by minimization and g+(x)

replaced by g−(x) := (1, Q̂τ (x, 0)). When Λ = 1, the two bounds collapse to the ordinary (stabilized) IPW
estimate of the ATT under unconfoundedness [4, 23]. These bounds can also be computed using a variant
of Lemma 1, but we omit the details.

A.3 AIPW computation

Here, we give formulas for three increasingly sharp AIPW sensitivity analyses. These were briefly discussed in
the main text in Sections 4.1 and 4.2. For simplicity, we focus our discussion on the estimand ψT = E[Y (1)].

Recall that, under unconfoundedness, the stabilized and unstabilized AIPW estimators of ψT have the
following formulas:

ψ̂
(stab)
T = En[µ̂(X, 1)] +

En[Z(Y − µ̂(X, 1))/ê(X)]

En[Z/ê(X)]

ψ̂
(unstab)
T = En[µ̂(X, 1)] + En[Z(Y − µ̂(X, 1))/ê(X)]

Analysts whose primary analysis was conducted using the stablized AIPW estimator ψ̂
(stab)
T may consider

using any of the following three estimators for ψ̂+
T :

max
ē∈En(Λ)

{
En[µ̂(X, 1)] +

En[Z(Y − µ̂(X, 1))/ē]

En[Z/ē]

}
(ZSB-AIPW)

max
ē∈En(Λ)

{
En[µ̂(X, 1)] +

En[Z(Y − µ̂(X, 1))/ē]

En[Z/ē]

}
s.t. En[Z/ē] = En[Z/ê(X)] (AIPW+1)

max
ē∈En(Λ)

{
En[µ̂(X, 1)] +

En[Z(Y − µ̂(X, 1))/ē]

En[Z/ē]

}
s.t.

(
En[Q̂(ϵ)

τ (X, 1)Z/ē]

En[Z/ē]

)
=

(
En[Q̂(ϵ)

τ (X, 1)Z/ê(X)]

En[Z/ê(X)]

)
(QB-AIPW)

ZSB-AIPW is the [60] proposal for stabilized AIPW estimators, which is generally not sharp. AIPW+1 was
described in Section 4.2 and adds a “balancing-ones” constraint which is necessary and sufficient for sharpness

under homoscedastic additive noise models. QB-AIPW additionally balances Q̂
(ϵ)
τ (x, z), an estimate of the τ -th

conditional quantile of the residual ϵ = Y − µ(X,Z), which is necessary for sharpness under heteroscedastic

models. All three approaches can be extended to ψ̂
(unstab)
T by removing the term En[Z/ē] from the objective,

though this change may impose a substantial cost with ZSB approach.
The additional constraints as we move from ZSB-AIPW to AIPW+1 to QB-AIPW come at a cost. In certain

simulations (see Appendix B), the constraints lead to substantial undercoverage of bootstrap confidence
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Method
DGP1 DGP2

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000
QB-Linear 90.7% 94.2% 94.5% 99.3% 100% 100%
Linear QB-AIPW 79.5% 90.1% 90.8% 95.5% 99.9% 100%
Linear AIPW+1 84.5% 92% 92% 97.4% 99.9% 100%
Linear ZSB-AIPW 87.2% 93% 93.8% 98% 100% 100%
QB-Forest 91.1% 95.6% 96.4% 98.1% 96.7% 96.7%
Forest QB-AIPW 91.4% 96.4% 97% 98% 96.7% 97.5%
Forest AIPW+1 94.6% 97.2% 97.6% 99.7% 99.1% 99.5%
Forest ZSB-AIPW 96.5% 97.8% 98% 99.9% 99.1% 99.5%
ZSB 96.9% 99.5% 99.8% 100% 100% 100%

Table 2: Table of rates at which various methods’ 95% bootstrap confidence intervals cover the full identified
sets in both DGPs and with increasing sample sizes.

intervals. The added constraint in AIPW+1 is necessary for sharpness in additive-noise models but typically
only refines the ZSB-AIPW estimate slightly. The QB-AIPW estimator, which requires an additional residual
nuisance estimate, can be sharp under more general models. However, the QB-AIPW’s under-coverage is
particularly extreme.

B Appendix: additional simulation results

This appendix presents additional simulation results beyond those appearing in the main text. For these
simulations, we use the same two DGPs as Section 5 but include additional estimators and sample sizes.

In our simulations, we compare the four types of methods described in Section 5 (QB, ZSB-AIPW, AIPW+1
and ZSB) along with the QB-AIPWmethod described in Section A.3. The QB-AIPWmethod requires an estimate

of Q
(ϵ)
α (x, z), the α-th conditional quantile of the residual ϵ = Y − µ(X,Z). For this, we use an estimator of

the form:

Q̂(ϵ)
α (x, z) = Q̂α(x, z)− µ̂(x, z).

Here, µ̂ is an estimate of the conditional mean of Y and Q̂α is an estimate of the α-th conditional quantile
of Y .

Figure 4 presents point estimates from all five methods when outcome regressions and conditional quan-
tiles are estimated using linear models. In DGP1, most methods perform well when n ≥ 500 except ZSB,
which is noticeably conservative. However, when n = 100, QB-AIPW is noticeably aggressive. Meanwhile, in
DGP2, all methods are conservative at all sample sizes because the quantile models are misspecified.

Figure 5 presents the same results when outcome regressions and conditional quantiles are estimated
using random forest models. In DGP1 the results are qualitatively similar to the results in Figure 4 except
QB-AIPW is no longer aggressive. Meanwhile, in DGP2, the QB and QB-AIPW methods yield sharper bounds
than the other methods at all sample sizes, since the others do not account for heteroscedasticity.

Table 2 present coverage of bootstrap 95% confidence intervals for all methods, DGPs, and sample
sizes. In DGP1, all methods but those that eventually over-cover exhibit under-coverage at n = 100. This
is especially extreme for linear AIPW methods. As the sample size increases, QB with linear quantiles
achieves near-nominal coverage, while the AIPW-based methods with linear regression estimates continue to
under-cover. ZSB-AIPW’s asymptotic conservativeness seems to be useful for offsetting this under-coverage.
With forest nuisance estimates, QB continues to achieve near-nominal coverage in DGP1, while AIPW-based
methods eventually over-cover. In DGP2, once we get beyond 100 observations, only QB-based methods
achieve coverage below 99%. In those settings, QB-based methods with forest quantile estimates achieve
near-nominal coverage.
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Figure 5: Box plot of point estimates across simulations with random forest-based quantile and outcome
regression estimates.
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C Appendix: proofs

This appendix collects proofs of the results in the main text along with supporting results. The organi-
zation of the appendix is to first prove all the Propositions appearing in the main text from first to last,
including immediately-related Theorems, then all of the remaining Theorems in the main text from first to
last. Proofs of non-immediate Corollaries are placed immediately after their main source. Proofs of substan-
tial Lemmas are placed immediately before the argument in which they are first used. For readers hoping
to follow all of the arguments from beginning to end, we recommend reading the results in the following order:

1. The proof of Proposition 1 in Section C.1 (Page 25).
2. The proof of Corollary 4 in Section C.2 (Page 26).
3. The proofs of Proposition 2 and Theorem 1 in Section C.3 (Page 28).
4. The proofs of Proposition 3 and Theorem 2 in Section C.4 (Page 28).
5. The proof of Corollary 3 in Section C.5 (Page 32)
6. The proof of Corollary 1 in Section C.6 (Page 33).
7. The proof of Lemma 1 in Section C.7 (Page 33).
8. The proof of Theorem 3, which is split across Sections C.8 (Page 34) and C.9 (Page 36) for the linear

and non-linear cases, respectively.
9. The proof of Theorem 4 in Section C.10 (Page 43).

Many of the proofs depend on results from earlier in the list, but no proof depends on any results appearing
later in the list.

Throughout, we will use the following notation. For an integer n ≥ 1, [n] denotes the set {1, · · · , n}. If
{an} and {bn} are sequences of real numbers, then an ≾ bn means an = O(bn) and an ∼ bn means an/bn → 1.
Similarly, if {An} and {Bn} are sequences of random variables, then An ≾P Bn means An = OP (Bn) and

An ∼P Bn means An/Bn
p−→ 1. We adopt the convention that a/b = 0 when a and b are both zero.

We also make use of some standard empirical process notation. For a (possibly random) function f : X ×
R×{0, 1} → R, we will write Pf :=

∫
fdP and Enf := 1

n

∑n
i=1 f(Xi, Yi, Zi). For any vector v = (v1, ..., vn),

we take Env = 1
n

∑n
i=1 vi. For any p ∈ [1,∞), we define ||f ||Lp(P ) = (P |f |p)1/p and ||f ||Lp(Pn) = (En|f |p)1/p.

When p = ∞, we set ||f ||L∞(P ) = inf{t : P (|f | ≤ t) = 1} and ||f ||L∞(Pn) = maxi≤n |f(Xi, Yi, Zi)|.

C.1 Proof of Proposition 1

We instead show the more general result:

Proposition 1B. Let (X,Y, Z) ∼ P , and let emin, emax : X → (0, 1] be any two functions. For any random
variable Ē ∈ (0, 1] satisfying E[Z/Ē|X] = 1 and Z/emax(X) ≤ Z/Ē ≤ Z/emin(X), we can construct random
variables (Y (0), Y (1), U) on the same probability space as (X,Y, Z, Ē) and an associated putative propensity
score ē(X,U) := E[Z|X,U ] satisfying the following properties:
(i) Y = ZY (1) + (1− Z)Y (0).
(ii) (Y (0), Y (1)) |= Z | (X,U) and emin(X) ≤ ē(X,U) ≤ emax(X).
(iii) Z/ē(X,U) = Z/Ē.

To recover the result of Proposition 1 from Proposition 1B, define emin(x) = e(x)/(e(x) + [1 − e(x)]Λ)
and emax(x) = e(x)/(e(x)+ [1−e(x)]/Λ). Then let Q be the joint distribution of (X,Y (0), Y (1), Z, U). Item
(i) implies Q is data compatible, item (ii) and Ē ∈ E∞(Λ) imply Q satisfies Assumption Λ, and item (iii)
implies EQ[Y (1)] = EQ[Y Z/ē(X,U)] = EP [Y Z/Ē].

Proof. We begin by constructing Y (0), Y (1) and U . Let (X,Y, Z, Ē) be as in the proposition, and suppose
we have access to independent random variables V1, V2 ∼ Uniform[0, 1] which are also jointly independent of
(X,Y, Z, Ē). Define the following collection of conditional distribution functions:

F (y|x, z) = P (Y ≤ y|X = x, Z = z)
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G(y|x, z, ē) = P (Y ≤ y|X = x, Z = z, Ē = ē)

H(ē|x, z) = P (Ē ≤ ē|X = x, Z = z)

K(u|x) =
∫ u

−∞

e(x)

1− e(x)

1− ē

ē
dH(ē|x, 1)

One can verify that the conditions E[Z/Ē|X] = 1 and Ē > 0 imply K(u|x) is a proper CDF for each x.
Using these functions, we define U , Y (1), and Y (0) by:

U = ZĒ + (1− Z)K−1(V2|X)

Y (1) = ZY + (1− Z)G−1(V1|X, 1, U)

Y (0) = ZF−1(V1|X, 0) + (1− Z)Y.

We adopt the convention that J−1(s) := inf{t : J(t) ≥ s} whenever J is a distribution function, so that
these quantities are well-defined even when some of these conditional distribution functions are not invertible.

With the construction done, we now verify the properties stated in the Proposition.

(i) This is immediate from the definition of Y (0) and Y (1).
(ii) We compute the distribution of (Y (0), Y (1)) given X,U,Z = 1 and the distribution of (Y (0), Y (1))

given X,U,Z = 0.

P (Y (0) ≤ y0, Y (1) ≤ y1|X,U,Z = 1) = P (F−1(V1|X, 0) ≤ y0, Y ≤ y1|X,U,Z = 1)

= P (F−1(V1|X, 0) ≤ y0|X,U,Z = 1)G(y1|X, 1, U)

= P (F−1(V1|X, 0) ≤ y0|X)G(y1|X, 1, U)

= F (y0|X, 0)G(y1|X, 1, U)

P (Y (0) ≤ y0, Y (1) ≤ y1|X,U,Z = 0) = P (Y ≤ y0, G
−1(V1|X, 1, U) ≤ y1|X,U,Z = 0)

= P (Y ≤ y0|X,U,Z = 0)P (G−1(V1|X, 1, U) ≤ y1|X,U,Z = 0)

= P (Y ≤ y0|X,Z = 0)G(y1|X, 1, U)

= F (y0|X, 0)G(y1|X, 1, U).

Since these are the same, (Y (0), Y (1)) |= Z | (X,U).

A short calculation using Bayes’ theorem shows that ē(X,U) = U .

ē(x, u) = e(x)
dP (u|X = x, Z = 1)

dP (u|X = x)

= e(x)
dP (u|x, 1)/dH(u|x, 1)
dP (u|x)/dH(u|x, 1)

=
e(x)

e(x) + (1− e(x)) e(x)
1−e(x)

1−u
u

= u

Since the support of K(·|x) is a subset of the support of H(·|x, 1), the assumption Z/emax(X) ≤ Ē ≤
Z/emin(X) implies emin(X) ≤ U ≤ emax(X) almost surely, so emin(X) ≤ e(X,U) ≤ emax(X).

(iii) The event Z = 1 implies U = Ē, so Z/e(X,U) = Z/U = Z/Ē.

C.2 Proof of Corollary 4

Proof. For this proof, we need a mathematically precise definition of the partially identified set. Let P(Λ)
be the set of all probability distributions Q on X × R × R × {0, 1} × Rk (for some k ≥ 1) satisfying the
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following properties:

(i) If (X,Y (0), Y (1), Z, U) ∼ Q, then (Y (0), Y (1)) |= Z | (X,U).
(ii) If we define Y = ZY (1) + (1 − Z)Y (0), then the law of (X,Y, Z) under Q is the observed-data

distribution P .
(iii) The odds ratio between Q(Z = 1 | X,U) and Q(Z = 1 | X) is bounded between Λ−1 and Λ almost

surely.

The partially identified set for ψT is the set ΨT = {EQ[Y (1)] : Q ∈ P(Λ)}. We begin by verifying (18) by
bounding ψ+

T below and then bounding it above.
For any random variable Ē on the same probability space as (X,Y, Z) satisfying EP [Z/Ē|X] = 1, Propo-

sition 1 implies that we may construct a distribution Q ∈ P(Λ) for which EQ[Y (1)] = EP [Y Z/Ē]. Therefore,
ψ+
T = supΨT ≥ EP [Y Z/Ē]. Since this inequality holds for every Ē satisfying EP [Z/Ē|X] = 1, it holds for

the supremum over Ē. This proves one side of the equality (18).
For the other side, for any distribution Q ∈ P(Λ), we may write:

EQ[Y (1)] = EQ[Y Z/Q(Z = 1 | X,U)]

= EQ[Y Z × E[1/Q(Z = 1 | X,U) | X,Y, Z]]

Since E[1/Q(Z = 1 | X,U) | X,Y, Z] is σ(X,Y, Z)-measurable, there exists a measurable function ēQ(x, y, z)
such that eQ(X,Y, Z) = 1/E[1/Q(Z = 1 | X,U) | X,Y, Z]. Hence, if we define the random variable Ē on the
same probability space on which P is defined by Ē = ēQ(X,Y, Z), then we have:

EQ[Y (1)] = EQ[Y Z/ēQ(X,Y, Z)]
= EP [Y Z/ēQ(X,Y, Z)]
= EP [Y Z/Ē].

Finally, we check that Ē has the required properties. For any integrable function h : X → R, we have:

EP [h(X)Z/Ē] = EP [h(X)Z/ēQ(X,Y, Z)]

= EQ[h(X)Z/ēQ(X,Y, Z)]

= EQ[h(X)ZE[1/Q(Z = 1 | X,U) | X,Y, Z]]
= EQ[h(X)]

= EP [h(X)]

Since this holds for every h, we may conclude EP [Z/Ē | X] = 1. Finally, since, conditional on X, the support
of ēQ(X,Y, Z) (under P or Q) is the same as that of Q(Z = 1 | X,U), we may conclude that the following
holds with probability one:

1 + 1−e(X)
e(X) Λ−1 ≤ 1/Ē ≤ 1 + 1−e(X)

e(X) Λ

Hence, Ē ∈ E∞(Λ), implying EQ[Y (1)] = EP [Y Z/Ē] ≤ supĒ∈E∞(Λ) E[Y Z/Ē] s.t. E[Z/Ē|X] = 1. Since Q
is arbitrary, the inequality continues to hold after taking the supremum over Q ∈ P(Λ) on both sides. This
proves the other side of (18).

The equality (17) follows from an identical argument.
We complete the proof by showing that the identified set is an interval. Suppose ψ = αψ−

T +(1−α)ψ−
T for

some α ∈ [0, 1]. Suppose Ē− and Ē+ solve (17) and (18), respectively. Define Ē∗ = 1/[α/Ē− +(1−α)/Ē+].
Then Ē∗ ∈

[
min{Ē−, Ē+},max{Ē−, Ē+}

]
, so Ē∗ ∈ E∞(Λ). In addition:

E[Z/Ē∗|X] = αE[Z/Ē−|X] + (1− α)E[Z/Ē+|X] = α+ (1− α) = 1

Therefore, by Proposition 1, αψ−
T + (1− α)ψ−

T is in the partially identified set.
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C.3 Proof of Proposition 2 and Theorem 1

Proof. We begin by proving Proposition 2, which is sufficient to make Theorem 1 a simple implication of
Corollary 4. By symmetry, it suffices to show that Ē+ solves both (12) and (18), where (12) is from Theorem
1 and (18) is from Corollary 4.

First, we show that there exists Ē+ ∈ E∞(Λ) with the properties stated in Proposition 2. Define
emin(x) = e(x)/(e(x)+ [1−e(x)]/Λ) and emax(x) = e(x)/(e(x)+ [1−e(x)]Λ). For any γ ∈ [emin(x), emax(x)],
define eγ(x, y) by:

ēγ(x, y) =

 emin(x) if y > Qτ (x, 1)
emax(x) if y < Qτ (x, 1)
γ if y = Qτ (x, 1)

We claim that for all x, there exists γ(x) ∈ [emin(x), emax(x)] solving E[Z/ēγ(x)(X,Y )|X = x] = 1. We will
prove this by applying the intermediate value theorem to the continuous function wx(γ) := E[Z/eγ(X,Y )|X =
x]. If we took γ = emax(x), then we would have:

wx(emax(x)) = F (Qτ (x, 1)|x, 1)(e(x) + [1− e(x)]/Λ) + (1− F (Qτ (x, 1)|x, 1))(e(x) + [1− e(x)]Λ)

≤ e(x) + (1− e(x))(τ/Λ + (1− τ)Λ)

= 1

and a similar calculation shows wx(emin(x)) ≥ 1. Thus, there is some γ(x) ∈ [emin(x), emax(x)] which solves
E[Z/ēγ(x)(X,Y )|X = x] = 1. Therefore, Ē+ := ēγ(X)(X,Y ) belongs to E∞(Λ) and satisfies E[Z/Ē+|X] = 1.

Now we show that any random variable Ē+ satisfying the requirements of the proposition solves the
quantile balancing problem (12). It is easy to see that Ē+ is feasible in (12), since E[Qτ (X)Z/Ē+] =
E[Qτ (X)E[Z/Ē+|X]] = E[Qτ (X)]. Moreover, for any other Ē ∈ E∞(Λ) which balances Qτ , we may write:

E[Y Z/Ē] = E[Qτ (X, 1)Z/Ē + (Y −Qτ (X, 1))Z/Ē]

≤ E[Qτ (X, 1)] + E[(Y −Qτ (X, 1))Z/Ē+]

= E[Qτ (X, 1)Z/Ē+] + E[(Y −Qτ (X, 1)Z/Ē+]

= E[Y Z/Ē+].

The inequality step follows because 1/Ē+ takes on the maximum allowable value whenever (Y −Qτ (X, 1))Z
is positive and the minimal allowable value whenever (Y −Qτ (X, 1))Z is negative, so (Y −Qτ (X, 1))Z/Ē+

is always larger than (Y −Qτ (X, 1))Z/Ē. Since Ē is arbitrary, this proves Ē+ solves (12).
Finally, Ē∗

+ solves the less constrained problem (12) and is feasible in the more constrained problem (18),
so it solves (18) as well. This proves Proposition 2.

Now we proceed to Theorem 1. To prove that the partially identified set is an interval, observe that the
set

W = {1/Ē : Ē ∈ E∞(Λ),EP [Z/Ē|X] = 1}

is convex. By Corollary 4, the partially identified set is the image of W under the linear function W 7→
E[Y ZW ]. Therefore, the partially identified set is a convex set in R, i.e. an interval.

The formulas for the interval endpoints follow immediately from Corollary 4 and Proposition 2. These
results also show that the endpoints are attained, so that the partially identified interval is closed.

C.4 Proof of Proposition 3 and Theorem 2

Proof. We will divide the proof of Proposition 3, where we begin, into several steps. Rather than explicitly
constructing a distribution Q with EQ[Y (1)] = EP [Y Z/Ē] and EQ[Y (0)] = EP [Y (1 − Z)/(1 − Ē)] for each
Ē satisfying the conditions of the Proposition, we will instead construct the extremal distributions Q+,+,
Q+,−, Q−,+ and Q−,− that attain the endpoints of the partially identified set for ψT and ψC. Then, we will
show that we can achieve any mixture. This will establish Proposition 3.
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C.4.1 Notation

We begin by recording some notation that will be used throughout the proof. By Theorem 1 and Proposition 2
(and their generalizations to the estimand ψC), the extremal potential outcomes have the following formulas:

ψ+
T = E[Y Z/Ē+

T ]

ψ−
T = E[Y Z/Ē−

T ]

ψ+
C = E[Y (1− Z)/(1− Ē+

C )]

ψ−
C = E[Y (1− Z)/(1− Ē−

C )]

where the worst-case propensity scores Ē−
T , Ē

+
T , Ē

−
C , Ē

+
C are random variables which satisfy the following:

Ē+
T =

{
e(X)

e(X)+[1−e(X)]Λ if Y > Qτ (X, 1)
e(X)

e(X)+[1−e(X)]/Λ if Y < Qτ (X, 1)

Ē−
T =

{
e(X)

e(X)+[1−e(X)]/Λ if Y > Q1−τ (X, 1)
e(X)

e(X)+[1−e(X)]Λ if Y < Q1−τ (X, 1)

Ē+
C =

{
e(X)

e(X)+[1−e(X)]/Λ if Y > Qτ (X, 0)
e(X)

e(X)+[1−e(X)]Λ if Y < Qτ (X, 0)

Ē−
C =

{
e(X)

e(X)+[1−e(X)]Λ if Y > Q1−τ (X, 0)
e(X)

e(X)+[1−e(X)]/Λ if Y < Q1−τ (X, 0)
.

The formulas for Ē−
C and Ē+

C can be derived by exchanging the roles of Z and 1− Z (and correspondingly
the roles of e(X) and 1− e(X)) and then applying Proposition 2.

C.4.2 Constructing Q+,−

We now construct the distribution Q+,− which attains the upper bound on ψT and the lower bound on ψC.
We will actually construct random variables Y (0), Y (1), U on the same probability space as (X,Y, Z), with
associated plausible propensity score ē(X,U) := E[Z|X,U ], that satisfy the following requirements:

(a) Y = Y (1)Z + Y (0)(1− Z).
(b) (Y (0), Y (1)) |= Z | (X,U).
(c) ē(X,U) ∈ E∞(Λ).
(d) E[Y (1)] = ψ+

T and E[Y (0)] = ψ−
C .

We then take Q+,− to be the joint distribution of (X,Y (0), Y (1), Z, U).
We start with the construction. Let (X,Y, Z) ∼ P and (V1, V2) ∼ Uniform[0, 1]2 independently of

(X,Y, Z). Let F (y|x, z) = P (Y ≤ y|X = x, Z = z) and H̄(y|x, z) = P (Y = y|X = x, Z = z). Let
T = τZ + (1− τ)(1− Z), and define the binary “confounder” U by:

U = I{Y > QT (X,Z)}+ I{Y = QT (X,Z), V1H̄(Y |X,Z) < F (Y |X,Z)− T}.

Define the conditional CDF of Y to sample from by G(y|x, z, u) = P (Y ≤ y|X = x, U = u, Z = z), and
construct Y (0), Y (1) by:

Y (1) = ZY + (1− Z)G−1(V2|X,Z = 1, U)

Y (0) = ZG−1(V2|X,Z = 0, U) + (1− Z)Y.

This concludes the construction. We now verify that Y (0), Y (1), U satisfy the required properties (a) – (d)
from the start of this sub-section.
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(a) This is immediate from the definition of Y (0) and Y (1).
(b) We prove (b) by computing the joint distribution of (Y (0), Y (1)) given X,U,Z = 1 and also the joint

distribution of (Y (0), Y (1)) given X,U,Z = 0.

P (Y (0) ≤ y0, Y (1) ≤ y1|X,U,Z = 1) = P (G−1(V2|X, 0, U) ≤ y0, Y ≤ y1|X,U,Z = 1)

= G(y0|X, 0, U)P (Y ≤ y1|X,U,Z = 1)

= G(y0|X, 0, U)G(y1|X, 1, U)

P (Y (0) ≤ y0, Y (1) ≤ y1|X,U,Z = 0) = P (Y ≤ y0, G
−1(V2|X, 1, U) ≤ y1|X,U,Z = 0)

= P (Y ≤ y0|X,U,Z = 0)G(y1|X, 1, U)

= G(y0|X, 0, U)G(y1|X, 1, U)

Since these are the same, (Y (0), Y (1)) |= Z | (X,U).
(c) We establish (c) by directly computing ē(X,U). First, observe that E[U |X,Z = 1] = 1− τ .

E[U |X,Z = 1] = P (Y > Qτ (X,Z)|X,Z = 1) + P (Y = Qτ (X,Z), V1 <
F (Qτ (X,1)|X,1)−τ
H̄(Qτ (X,1)|X,1)

| X, 1)

= 1− F (Qτ (X, 1)|X, 1) + H̄(Qτ (X, 1)|X, 1)F (Qτ (X,1)|X,1)−τ
H̄(Qτ (X,1)|X,1)

= 1− τ

A similar calculation shows E[U |X,Z = 0] = τ . Therefore, we have:

ē(x, 0) = P (Z = 1 | X = x, U = 0)

=
e(x)P (U = 0|X = x, Z = 1)

e(x)P (U = 0|X = x, Z = 1) + [1− e(x)]P (U = 0|X = x, Z = 0)

=
e(x)τ

e(x)τ + [1− e(x)](1− τ)

=
e(x)

e(x) + [1− e(x)]/Λ

ē(x, 1) = P (Z = 1 | X = x, U = 1)

=
e(x)P (U = 1|X = x, Z = 1)

e(x)P (U = 1|X = x, Z = 1) + [1− e(x)]P (U = 1|X = x, Z = 0)

=
e(x)(1− τ)

e(x)(1− τ) + [1− e(x)]τ

=
e(x)

e(x) + [1− e(x)]Λ

Both ē(x, 1) and ē(x, 0) satisfy the bounded odds ratio condition, so ē(X,U) ∈ E∞(Λ).
(d) The explicit formulas for ē(X,U) obtained in the proof of (c) shows that ē(X,U) satisfies:

ē(X,U) =

{
e(X)

e(X)+[1−e(X)]Λ if U = 1
e(X)

e(X)+[1−e(X)]/Λ if U = 0
(34)

If Z = 1, then Y > Qτ (X, 1) implies U = 1 while Y < Qτ (X, 1) implies U = 0. Therefore, by
comparing (34) with the formula for Ē+

T , we may conclude that Z/ē(X,U) = Z/Ē+
T , except possibly

on the event Y = Qτ (X, 1). Moreover, we can check that E[Z/ē(X,U)|X] = 1.

E[Z/ē(X,U)|X] = e(X)E[1/ē(X,U)|X,Z = 1]

= e(X)(P (U = 0|X,Z = 1)/ē(X, 0) + P (U = 1|X,Z = 1)/ē(X, 1))

= e(X)(τ(1 + 1−e(X)
e(X) Λ−1) + (1− τ)(1 + 1−e(X)

e(X) Λ))
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= 1

Therefore, E[Y Z/ē(X,U)] = ψ+
T by Proposition 2.

Similarly, when Z = 0, then Y > Q1−τ (X, 0) implies U = 1 and Y < Q1−τ (X, 0) implies U = 0.
Therefore, by comparing (34) with the formula for Ē−

C , we can conclude (1 − Z)/(1 − ē(X,U)) =
(1 − Z)/(1 − Ē−

C ), except possibly on the event Y = Q1−τ (X, 0). Moreover, we can check that
E[(1− Z)/(1− ē(X,U))|X] = 1.

E[(1− Z)/(1− ē(X,U))|X] = (1− e(X))E[1/(1− ē(X,U))|X,Z = 0]

= (1− e(X))(P (U=0|X,Z=0)
1−ē(X,0) + P (U=1|X,Z=1)

1−ē(X,1) )

= (1− e(X))((1− τ) 1−e(X)+e(X)Λ
1−e(X) + τ 1−e(X)+e(X)/Λ

1−e(X) )

= 1

Therefore, by an argument similar to the proof of Proposition 2, we have E[Y Z/ē(X,U)] = ψ−
C .

C.4.3 Constructing the other extremal distributions

Next, we construct the other extremal distributions. We start with the distribution Q+,+ that attains ψ+
T

and ψ+
C .

Define Y ′ = ZY + (1 − Z)(−Y ). Applying the construction from Section C.4.2 to the data (X,Y ′, Z)
yields potential outcomes (Y (0)′, Y (1)′) and a binary confounder U ′ satisfying the consistency relation Y ′ =
Y (1)′Z + Y (0)′(1 − Z) and the unconfoundedness condition (Y (0)′, Y (1)′) |= Z | (X,U ′). Moreover, if we
define Q′

t(x, z) to be the t-th conditional quantile of Y ′ given X = x, Z = z, then e′(X,U ′) := E[Z|X,U ′]
will satisfy:

Z/e′(X,U ′) =

 Z
(
1 + 1−e(X)

e(X) Λ+1
)

if Y ′ > Q′
τ (X, 1)

Z
(
1 + 1−e(X)

e(X) Λ−1
)

if Y ′ < Q′
τ (X, 1)

(1− Z)/(1− e′(X,U ′)) =

 (1− Z)
(
1 + e(X)

1−e(X)Λ
−1
)

if Y ′ > Q′
1−τ (X, 0)

(1− Z)
(
1 + e(X)

1−e(X)Λ
+1
)

if Y ′ < Q′
1−τ (X, 0)

and also E[Z/e′(X,U ′)|X] = E[(1− Z)/(1− e′(X,U ′)|X] = 1.
Observe that when Z = 1, Y ′ = Y and Q′

τ (X, 1) = Qτ (X, 1). Therefore, Z/e′(X,U ′) = Z/Ē+
T , except

possibly on the event Y = Qτ (X, 1). As a result, Proposition 2 and Theorem 1 imply:

E[Y (1)′] = E[Y ′Z/e′(X,U ′)]

= E[Y ′Z/Ē+
T ]

= ψ+
T

On the other hand, when Z = 0, we have Y ′ = −Y and Q′
1−τ (X, 0) = −Qτ (X, 0). On this event, Y ′ >

Q′
1−τ (X, 0) is equivalent to Y < Qτ (X, 0), so (1−Z)/(1− e′(X,U ′) = (1−Z)/(1− Ē+

C ), except possibly on
the event Y = Qτ (X, 0). Similarly, Proposition 2 and Corollary 2 imply:

E[Y (0)′] = E[Y ′(1− Z)/(1− e′(X,U ′))]

= −E[Y (1− Z)/(1− Ē+
C )]

= −ψ+
C

Finally, we define Y (0) = −Y (0)′, Y (1) = Y (1)′ and U = U ′. Then the data (Y (0), Y (1), Z,X,U) will satisfy
Assumption Λ and also E[Y (1)] = ψ+

T , E[Y (0)] = ψ−
C .

To construct Q−,−, apply the preceding construction to Y ′′ = −Y ′. To construct Q−,+, apply the
construction in Section C.4.2 to Y ′′′ = −Y .
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C.4.4 Creating all convex combinations

Finally, we show that for any ψT satisfying ψ−
T ≤ ψT ≤ ψ+

T and any ψC satisfying ψ−
C ≤ ψC ≤ ψ+

C , there is
a data-compatible distribution Q satisfying Assumption Λ with EQ[Y (1)] = ψT and EQ[Y (0)] = ψC.

Since the vector (ψT, ψC) lies in the convex hull of the points (ψ−
T , ψ

−
C ), (ψ

−
T , ψ

+
C ), (ψ

+
T , ψ

−
C ), (ψ

+
T , ψ

+
C ),

there exists nonnegative weights w1, w2, w3, w4 summing to one and satisfying:(
ψT

ψC

)
= w1

(
ψ−
T

ψ−
C

)
+ w2

(
ψ−
T

ψ+
C

)
+ w3

(
ψ+
T

ψ−
C

)
+ w4

(
ψ+
T

ψ+
C

)
Let M ∼ Multinomal({1, · · · , 4}, (w1, · · · , w4)), and sample (X,Y (0), Y (1), Z, U) ∼ Q−,− when M = 1,
Q−,+ when M = 2, Q+,− when M = 3 and Q+,+ when M = 4. Finally, let Q be the distribution of
(X,Y (0), Y (1), Z, U ′) where U ′ = (U,M).

It is clear that the distribution Q is data-compatible and satisfies Assumption Λ, since it is the mixture
of distributions satisfying these conditions. Moreover, it is easy to check that EQ[Y (1)] = EQ[E[Y (1)|M ]] =
w1ψ

−
T + w2ψ

−
T + w3ψ

+
T + w4ψ

+
T = ψT. By the same reasoning, EQ[Y (0)] = ψC.

C.4.5 Proof of Theorem 2

We now proceed to prove Theorem 2.
As in the proof of Corollary 4, let P(Λ) be the set of full-data distributions Q compatible with Assumption

Λ and the observed-data distribution P . Then we may write:

ψ+
ATE = sup

Q∈P(Λ)

EQ[Y (1)− Y (0)]

≤ sup
Q∈P(Λ)

EQ[Y (1)]− inf
Q∈P(Λ)

EQ[Y (0)]

= ψ+
T − ψ−

C .

In the other direction, Proposition 2 implies that there exists worst-case propensity scores Ē+
T and

Ē−
C in E(Λ) satisfying ψ+

T = EP [Y Z/Ē+
T ] and ψ−

C = EP [Y (1 − Z)/(1 − Ē−
C )] such that if we define Ē =

ZĒ+
T+(1−Z)Ē−

C , then Ē satisfies the hypotheses of Proposition 3. Therefore, Proposition 3 implies that there
exists a distributionQ ∈ P(Λ) for which EQ[Y (1)−Y (0)] = ψ+

T−ψ−
C . Therefore supQ∈P(Λ) EQ[Y (1)−Y (0)] ≥

ψ+
T − ψ−

C .
The arguments so far imply ψ+

T − ψ−
C ≥ ψ+

ATE = supQ∈P(Λ) EQ[Y (1) − Y (0)] ≥ ψ+
T − ψ−

C . Thus,

ψ+
ATE = ψ+

T − ψ−
C . By exactly the same reasoning, ψ−

ATE = ψ−
T − ψ+

C .
Finally, it remains to show that the partially identified set for ψATE is a closed interval. By Proposition

3, the partially identified set for the ATE contains the set {ψT − ψC : (ψT, ψC) ∈ [ψ−
T , ψ

+
T ] × [ψ−

C , ψ
+
C ]},

which is a closed interval. Moreover, the preceding calculation shows it does not contain any other points.
Thus, the partially identified set is a closed interval.

C.5 Proof of Corollary 3

Proof. First, we will compute the partially identified set for ψT. Let zτ denote the τ -th quantile of the
standard normal distribution. Since the conditional distribution of Y | X = x, Z = 1 is continuous for every
x, Proposition 2 implies ψ+

T = E[Y Z/Ē+] where Ē+ satisfies the following:

1/Ē+ =

{
1 + 1−e(X)

e(X) Λ+1 if Y ≥ µ(X, 1) + σ(X)zτ

1 + 1−e(X)
e(X) Λ−1 if Y < µ(X, 1) + σ(X)zτ

Let C(x) = µ(x, 1)+ σ(x)zτ . Write E[Y Z/Ē+] = E[e(X)E[Y/Ē+|X,Z = 1]] and evaluate the inner expecta-
tion as follows:

E[Y/Ē+|X,Z = 1] = τE[Y/Ē+|X,Z = 1, Y < C(X)] + (1− τ)E[Y/Ē+|X,Z = 1, Y ≥ C(X)]
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= τE[Y |X,Z = 1, Y < C(X)] + τ 1−e(X)
e(X) Λ−1E[Y |X,Z = 1, Y < C(X)]

= µ(X,1)
e(X) + Λ−1

Λ
1−e(X)
e(X) σ(X)ϕ(zτ )1−τ

In the last step, we used the inverse Mills ratio formula for the expectation of a truncated Gaussian distri-

bution. Simplifying gives ψ+
T = E[µ(X, 1)] + Λ2−1

Λ ϕ(zτ )E[(1− e(X))σ(X)].
At this point, we can immediately generalize the above calculation to all other potential outcome bounds.

By applying the preceding calculation to −Y and negating the answer, we may conclude:

ψ−
T = E[µ(X, 1)]− Λ2−1

Λ ϕ(zτ )E[(1− e(X))σ(X)].

By exchanging the roles of Z and 1−Z (and correspondingly the roles of e(X) and 1−e(X)), we then obtain
the bounds:

ψ+
C = E[µ(X, 0)] + Λ2−1

Λ ϕ(zτ )E[e(X)σ(X)]

ψ−
C = E[µ(X, 0)]− Λ2−1

Λ ϕ(zτ )E[e(X)σ(X)]

Finally, subtracting the sharp bounds on ψT and ψC as justified by Theorem 2 gives the conclusion of
Corollary 3.

C.6 Proof of Corollary 1

Proof. The partially identified set for ψT follows from the proof of Corollary 3, so we only need to show that
the ZSB interval is asymptotically too wide. Let ψ̂+

T,ZSB be as in (5). Let Ē∗ = 1
3 + 1

3 I{Y ≤ 0.27
√
σ2 + 1},

and notice that Y | Z = 1 ∼ N (0, σ2 + 1). Then a straightforward calculation using the Inverse Mills ratio
formula gives:

E[Y Z/Ē∗]

E[Z/Ē∗]
=
ϕ(0.27)

√
σ2 + 1

2− Φ(0.27)
> 0.276

√
σ2 + 1

The strong law of large numbers implies lim inf ψ̂+
T,ZSB ≥ lim inf(EnY Z/Ē∗)/(EnZ/Ē∗) > 0.27

√
σ2 + 1

almost surely. The lower bound follows by symmetry.
Note that the ZSB approach remains conservative even in the case σ2 = 0, in which the identified set

is [± 3
4ϕ(z2/3)] ⊂ [±0.276] and the ZSB AIPW approach we discuss in Section 4.2 is equivalent to this ZSB

IPW approach.

C.7 Proof of Lemma 1

Proof. If Λ = 1, the claim holds trivially, so we proceed assuming Λ > 1.
Let Ŵi = Zi(1− ê(Xi))/ê(Xi). Since Ln is convex, computing the subdifferential optimality criterion for

γ̂ shows that there exists a vector ∆ ∈ [Λ−1,Λ]n such that EnŴg(X)(∆−1) = 0 and ∆i = Λsign(Yi−γ̂⊤h(Xi))

whenever Yi ̸= γ̂⊤h(Xi).

We will first show that ē∗i := (1 + ∆i(1− êi)/êi)
−1

solves (31). It is clear that ē∗i belongs to En(Λ).
Moreover, we have 0 = EnŴg(X)(∆ − 1) = Eng(X)Z/ē∗ − Eng(X)Z/ê(X). Therefore ē∗ is a feasible
solution to (31).

Optimality of ē∗i follows from Theorem 3.1 in [12]. The main technical requirement to apply that result
is that Eng(X)Z/ê(X) is in the relative interior of {Eng(X)Z/ẽ : ẽ ∈ En(Λ)}. If 0 < êi < 1 for all i, then
this condition is satisfied by the open mapping theorem and the fact that 1/ê is an interior point of 1/En(Λ).

Finally, we show the desired equivalence:

EnY Z/ē∗

EnZ/ê(X)
=i

En(Y − γ̂⊤g(X))Z/ē∗ + Enγ̂⊤g(X)Z/ē∗

EnZ/ê(X)
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=ii
En(Y − γ̂⊤g(X))Z/ē∗ + Enγ̂⊤g(X)Z/ê(X)

EnZ/ê(X)

=iii
En(Y − γ̂⊤g(X))Z(1 + ΛV̂ (1− ê(X))/ê(X)) + Enγ̂⊤g(X)Z/ê(X)

EnZ/ê(X)

There, step i adds and subtracts the term Enγ̂⊤g(X)Z/ē∗ in the numerator, step ii uses the fact that ē∗

“balances” g(X), and step iii restates ē∗ in terms of V̂ . Since EnY Z/ē
∗

EnZ/ê(X) is the objective value from (31), this

proves Lemma 1.

C.8 Proof of Theorem 3 for linear quantiles

In this section, we give the proof of Theorem 3 under the assumption that Q̂τ (x, z) = β̂(z)⊤h(x) for some
“features” h : X → Rk with finite variance. Results for K-fold cross-fit linear estimates hold by viewing the
folds as random and interacting the features with the fold identities to produce features in Rk∗K . We assume
throughout that h contains an “intercept”, i.e. h1(x) ≡ 1. For simplicity, we only give the arguments for the

estimator ψ̂+
T . Results for other quantile balancing bounds follow by essentially the same arguments. Since

this estimator only involves a single estimated quantile function, we will lighten the notation by writing Q(x)
and Q̂(x) in place of Qτ (x, 1) and Q̂τ (x, 1).

C.8.1 Supporting lemmas

The proofs will make use of several easy lemmas.

Lemma 2. Assume that Conditions 1 and 2 hold, and also that Q(x) = β⊤
0 h(x) for some β0 ∈ Rd. Further

suppose that E[h(X)h(X)⊤] is finite and nonsingular. Let γ̂ minimize the loss function Ln(γ) = Enρτ (Y −
γ⊤h(X))Z 1−ê(X)

ê(X) . Then γ̂
p−→ β0.

Proof. Define the population loss function L by:

L(γ) = EP [ρτ (Y − γ⊤h(X))Z 1−e(X)
e(X) ]

= EP [(1− e(X))E[ρτ (Y − γ⊤h(X))|X,Z = 1]]

By Condition 2, β0 is the unique minimizer of E[ρτ (Y − γ⊤h(X))|X = x, Z = 1] for each x ∈ X , and hence
the unique minimizer of L.

We will show that Ln converges to L pointwise in probability. For each γ ∈ Rd, we have:

Ln(γ) = Enρτ (Y − γ⊤h(X))Z 1−ê(X)
ê(X)

= Enρτ (Y − γ⊤h(X))Z 1−e(X)
e(X) + Enρτ (Y − γ⊤h(X))Z(1/ê(X)− 1/e(X))

= Enρτ (Y − γ⊤h(X))Z 1−e(X)
e(X) +O(||ρτ (y − γ⊤h(x))||L2(Pn)||1/ê− 1/e||L2(Pn))

= L(γ) + oP (1)

where the last step is by the law of large numbers and Condition 1. The conclusion γ̂
p−→ β0 now follow from

general consistency results for convex M-estimators, e.g. Theorem 2.7 in [40].

Lemma 3. Let Ûi = sign(Yi − Q̂(Xi)). Then we have the inequality:

ψ̂+
T ≤ En(Y − Q̂(X))Z(1 + ΛÛ (1− ê(X))/ê(X)) + EnQ̂(X)Z/ê(X)

EnZ/ê(X)
(35)
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Proof. By Lemma 1, ψ̂+
T would be exactly equal to the right-hand side of (35) if Ûi were replaced by

V̂i = sign(Yi − γ̂0 − γ̂1Q̂(Xi)) where γ̂ = (γ̂0, γ̂1) comes from Ln in Lemma 3. However, (Yi − Q̂(Xi))Λ
Ûi is

(weakly) larger than (Yi − Q̂(Xi))Λ
V̂i for every i, since Ûi exactly matches the sign of Yi − Q̂(Xi) while V̂i

might not. Making this replacement index-by-index gives (35).

Lemma 4. Let Ui = sign(Yi −Q(Xi)). Then we have the inequality:

ψ̂+
T ≥ En(Y − γ̂⊤h(X))Z(1 + ΛU (1− ê(X))/ê(X)) + Enγ̂⊤h(X)Z/ê(X)

EnZ/ê(X)
(36)

where γ̂ is as in Lemma 2.

Proof. For the purposes of this proof, let ψ̄+
T be the solution to the “feature-balancing” problem:

ψ̄+
T = max

ē∈En(Λ)

∑n
i=1 YiZi/ēi∑n
i=1 Zi/ēi

s.t. Enh(X)Z/ē = Enh(X)Z/ê(X).

It is clear that ψ̂+
T ≥ ψ̄+

T , since the feature balancing problem has the same objective as the quantile balancing
problem but faces more constraints. Lemma 1 implies the ψ̄+

T would be exactly equal to the right-hand side

of (36) if we replaced Ui by Ûi = sign(Yi − γ̂⊤h(Xi)). However, (Yi − γ̂⊤h(Xi))Λ
Ui is (weakly) smaller than

(Yi− γ̂⊤h(Xi))Λ
Ûi for every i, since Ûi exactly matches the sign of Yi− γ̂⊤h(Xi) while Ui might not. Making

this replacement index-by-index gives (36).

C.8.2 Proof of main result

Now we prove Theorem 3(i), which we restate to make the regularity conditions more precise.

Theorem 3(i). (Sharpness for ψ+
T)

Assume Conditions 1, 2, and 3.(i). If Q(x) = β⊤
0 h(x) for some β0 ∈ Rk and β̂

p−→ β0, then ψ̂
+
T = ψ+

T −oP (1).
However, even if Q(x) ̸= β⊤h(x) for any β, we still have ψ̂+

T ≥ ψ+
T − oP (1).

Proof. We start by proving the upper bound ψ̂+
T ≤ ψ+

T + oP (1) in the well-specified case. Lemma 3 gives the
following upper bound on the quantile balancing estimator:

ψ̂+
T ≤ En(Y − Q̂(X))Z(1 + ΛÛ (1− ê(X))/ê(X)) + EnQ̂(X)Z/ê(X)

EnZ/ê(X)
.

Condition 1 implies EnZ/ê(X)
p−→ 1, and the consistency of β̂ implies EnQ̂(X)Z/ê(X)

p−→ E[Q(X)]. To

establish the upper bound, it remains to show En(Y − Q̂(X))Z(1 + ΛÛ (1 − ê(X))/ê(X)) converges to
ψ+
T − E[Q(X)].
The first step is to replace the estimated propensity score ê appearing in this quantity by the true nominal

propensity score e. The Cauchy-Schwarz inequality and Condition 1 imply:

En(Y − Q̂(X))ZΛÛ ( 1−ê(X)
ê(X) − 1−e(X)

e(X) ) = O(||Y − β̂⊤h(X)||L2(Pn) × ||1/ê(X)− 1/e(X)||L2(Pn))

= OP ((||Y ||L2(Pn) + ||β̂⊤h(X)||L2(Pn))× ε−2||ê(X)− e(X)||L∞(Pn))

= OP (||Y ||L2(Pn) + ||Q(X)||L2(Pn))× oP (1))

= oP (1)

Thus, En(Y − Q̂(X))Z(1 + ΛÛ 1−ê(X)
ê(X) ) = En(Y −Q(X))Z(1 + ΛÛ 1−e(X)

e(X) ) + oP (1).

The next step is to replace Û and Q̂(X) by U = sign(Y − Q(X)) and Q(X), respectively. For this, we
employ a uniform convergence argument. For each β ∈ Rk, define the function fβ(x, y, z) by:

fβ(x, y, z) = (y − β⊤h(x))z(1 + Λsign(y−β⊤h(x)) 1−e(x)
e(x) ).
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Standard Glivenko-Cantelli (GC) preservation arguments (c.f. [32]) show that the class F = {fβ : ||β−β0|| ≤
1} is GC, so we have the uniform convergence supf∈F |Enf − Pf | = oP (1). Moreover, the map β 7→ Pfβ is
continuous at β0, which can be seen by noticing that as β → β0, fβ(x, y, z) → fβ0

(x, y, z) for almost every
(x, y, z) (exceptions occur when y = β⊤

0 x, but Condition 2 implies this happens with probability zero) and
then applying the dominated convergence theorem. Thus, we have:

En(Y − Q̂(Z))Z(1 + ΛÛ 1−e(X)
e(X) ) = Enfβ̂(X,Y, Z)

= Pfβ̂(X,Y, Z) + oP (1)

= Pfβ0
(X,Y, Z) + oP (1)

= E[(Y −Q(X))Z/Ē+] + oP (1)

= ψ+
T − E[Q(X)] + oP (1)

Combining these various results gives ψ̂+
T ≤ ψ+

T+oP (1). This establishes the upper bound in the well-specified
case.

Now we turn to the lower bound, ψ̂+
T ≥ ψ+

T − oP (1), beginning in the correctly-specified case. Lemma 4
lower bounds the quantile balancing estimator by a variant of the “feature balancing” estimator:

ψ̂+
T ≥ En(Y − γ̂⊤h(X))Z(1 + ΛU (1− ê(X))/ê(X)) + Enγ̂⊤h(X)Z/ê(X)

EnZ/ê(X)
.

We will show that this lower bound is at least ψ+
T − oP (1). We may assume without loss of generality

that E[h(X)h(X)⊤] is full rank, since excising features that are linear combinations of other ones has no
effect on the feature balancing estimator. In the preceding display, the denominator EnZ/ê(X) converges to
one, so we can focus on the two terms in the numerator.

Since Lemma 2 implies that γ̂ is consistent, exactly the same arguments from the upper bound show

Enγ̂⊤h(X)Z/ê(X)
p−→ E[Q(X)]. Moreover, the argument from the upper bound shows that ê can be replaced

by e in the expression En(Y − γ̂⊤h(X))Z(1+ΛU (1− ê(X))/ê(X)). Some manipulation shows that 1+ΛU (1−
e(X))/e(X) = 1/Ē+ almost surely, where Ē+ is the worst-case propensity score defined in Proposition 2.
Therefore, we may write:

En(Y − γ̂⊤h(X))Z(1 + ΛU 1−ê(X)
ê(X) ) = En(Y − γ̂⊤h(X))Z/Ē+ + oP (1)

= En(Y −Q(X))Z/Ē+ +OP (||γ̂ − β0||) + oP (1)

= ψ+
T − E[Q(X)] + oP (1)

Combining these various results gives ψ̂+
T ≥ ψ+

T−oP (1). This establishes the lower bound in the well-specified
case.

Finally, we extend the lower bound to the misspecified case. If Q(x) ̸= β⊤h(x) for any β, then we can

lower bound ψ̂+
T by the feature-balancing estimator that balances h(x) and the true quantile Q(x). This

brings us back to the well-specified case, so the preceding arguments show ψ̂+
T ≥ ψ+

T − oP (1).

C.9 Proof of Theorem 3 for nonlinear quantiles

In this section, we prove Theorem 3 when quantiles are estimated by a nonlinear model. As in the case of
linear quantiles, we will give the argument for the estimator ψ̂+

T . As such, we will continue to use Q̂(x) and

Q(x) as shorthand for Q̂τ (x, 1) and Qτ (x, 1).

C.9.1 Regularity conditions

As alluded to in Condition 3, we require nonlinear models to be estimated using a form of sample splitting
called “cross-fitting” [10, 52, 41]. We briefly describe the procedure, mostly to fix notation.
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The sample {(Xi, Yi, Zi)} is divided into K disjoint “folds” F1, · · · ,FK of approximately equal size.
For each k ∈ [K], a quantile estimate Q̂−k is obtained using observations not in Fk. Finally, we set

Q̂i =
∑K
k=1 Q̂−k(Xi)I{i ∈ Fk}. In this way, no observation is used to obtain its own quantile estimate. In

the extreme case where K is equal to the sample size, this is simply “leave-one-out” estimation. However,
in cross-fitting, K is taken to be a fixed constant.

We also require the fitted quantiles Q̂i to satisfy an additional regularity condition.

Condition N. For some α, β > 0, we have maxi≤n |Q̂i| = oP (n
α) and P(0 < |Q̂i−Q̂j | < n−β for some (i, j)) →

0.

This condition rules out gross “outliers” in Q̂i which are difficult to balance. The condition maxi |Q̂i| =
oP (n

α) alone is not sufficient for this, because it is not an affine-invariant assumption. One can take an
arbitrarily poorly-behaved estimate Q̂ and scale it to be bounded by one without changing the estimator
ψ̂+
T . The separation requirement rules out this trick.
It is not hard to find examples of estimators which satisfy this condition. For example, under Conditions

1 and 2, Condition N is satisfied by any estimator whose fitted values {Q̂i} only take values in the observed
outcomes {Yi} (e.g. [37, 55, 2] will satisfy it with α = 1

2 and any β > 2).1

C.9.2 Supporting lemmas

To simplify the proof, we separate out a preliminary convergence result as a lemma. Throughout this
proof and the next, we will use the following notation: for a function f , Eknf denotes the fold-k average
1

|Fk|
∑
i∈Fk

f(Xi, Yi, Zi).

Lemma 5. Assume Condition 1. Suppose ||Q̂−k −Q||L2(P )
p−→ 0 for each k ∈ [K]. Then ||Q̂−Q||L2(Pn) =

oP (1) and EnQ̂Z/ê(X) = E[Q(X)] + oP (1).

Proof. Start with the first claim. For any k ∈ [K], applying Markov’s inequality conditionally on {(Xi, Yi, Zi)}i ̸∈Fk

gives Ekn(Q̂−k(X) − Q(X))2 = OP (||Q̂−k − Q||2L2(P )) = oP (1). Averaging over k ∈ [K] gives the desired
result.

For the second claim, write:

EnQ̂Z/ê(X) = EnQZ/e(X) + En(Q̂−Q)Z/e(X) +O(||Q̂||L2(Pn)||1/ê− 1/e||L2(Pn))

= E[Q(X)] +O(||Q̂−Q||L2(Pn)/ε) + oP (1)

= E[Q(X)] + oP (1).

C.9.3 Proof of main result

Now we are ready to prove Theorem 3 for nonlinear quantile models in the case of the estimand ψ+
T . We

restate the result to make the quantile consistency assumption precise.

Theorem 3(ii). Assume Conditions 1, 2, 3.(ii), and N. If ||Q̂−k −Q||L2(P ) = oP (1) for each k ∈ [K], then

ψ̂+
T = ψ+

T − oP (1). However, even if ||Q̂−k −Q||L2(P ) ̸→ 0, we still have ψ̂+
T ≥ ψ+

T − oP (1).

1The upper bound follows from the well-known fact that the maximum of n i.i.d. observations from a distribution with
finite variance has magnitude oP (n1/2). Therefore, maxi |Q̂i| ≤ maxj |Yj | = oP (n1/2). For the lower bound, it suffices to
show that P(mini ̸=j |Yi − Yj | < n−β) → 0 whenever β > 2. Let FY (y) = P (Y ≤ y), and let B < ∞ be a uniform bound on

F ′
Y (·); this exists since f(y|x, z) is uniformly bounded by Condition 2. Then P(mini ̸=j |Yi −Yj | < n−β) ≤ P(∆ ≤ Bn−β) where

∆ = mini ̸=j |FY (Yi)− FY (Yj)|. Theorem 8.2 in [13] shows that n2∆⇝ Exponential(1), so P(n2∆ ≤ Bn−(β−2)) → 0.
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Proof. We start by proving ψ̂+
T ≤ ψ+

T + oP (1) when the quantile model is consistent. This part of the proof
follows roughly the same template as the corresponding proof in the linear case. Lemma 3 implies:

ψ̂+
T ≤ En(Y − Q̂)Z(1 + ΛÛ (1− ê(X))/ê(X)) + EnQ̂Z/ê(X)

EnZ/ê(X)

where Ûi = sign(Yi − Q̂i). Since EnZ/ê(X)
p−→ 1 by Condition 1 and EnQ̂Z/ê(X)

p−→ E[Q(X)] by Lemma

5, it remains to show that En(Y − Q̂)Z(1 + ΛÛ (1 − ê(X))/ê(X)) converges to ψ+
T + oP (1). By the same

reasoning as in the linear case, we may replace ê(X) by e(X) in this quantity without changing its value
much. Thus, we may write:

En(Y − Q̂)Z(1 + ΛÛ 1−ê(X)
ê(X) ) = En(Y − Q̂)Z(1 + ΛÛ 1−e(X)

e(X) ) + oP (1)

=i En(Y −Q(X))Z(1 + ΛÛ 1−e(X)
e(X) ) +O(ε−1||Q̂(X)−Q(X)||L2(Pn)) + oP (1)

=ii En(Y −Q(X))Z(1 + ΛÛ 1−e(X)
e(X) ) + oP (1)

=iii En(Y −Q(X))Z/Ē+ +O(||Y −Q(X)||L2(Pn)||ZΛ
Û − ZΛU ||L2(Pn)) + oP (1)

=iv ψ
+
T − E[Q(X)] +OP (||ZΛÛ − ZΛU ||L2(Pn)) + oP (1)

Here, i adds and subtracts a term then applies Cauchy-Schwarz, ii applies Lemma 5 to conclude ||Q̂ −
Q||L2(Pn) = oP (1), iii adds and subtacts En(Y −Q(X))Z/Ē+ and applies Cauchy-Schwarz, and iv holds by
Proposition 2 and the law of large numbers.

It remains to prove that ||ZΛÛ −ZΛU ||L2(Pn) = oP (1), or equivalently (up to constants) that EnZI{Û ̸=
U} = oP (1). For each k ∈ [K], we may apply Chebyshev’s inequality conditional on {(Xi, Yi, Zi)}i ̸∈Fk

to
conclude: ∣∣∣∣EknZI{Û ̸= U} −

∫
zI{sign(y − Q̂−k(x)) ̸= sign(y −Q(x))} dP (x, y, z)

∣∣∣∣ = oP (1)

The integral in the preceding display tends to zero in probability. To see this, recall that Condition 2 requires
the conditional density f(y|x, z) to be uniformly bounded by some B <∞, so we may write:∫

zI{sign(y − Q̂−k(x)) ̸= sign(y −Q(x))}dP (x, y, z) =
∫
X
e(x)

∫ Q̂−k(x)∨Q(x)

Q̂−k(x)∧Q(x)

f(y|x, 1) dy dPX(x)

≤
∫
X

(1− ε)B|Q̂−k(x)−Q(x)|dPX(x)

≾ ||Q̂−k −Q||L1(P )

≤ ||Q̂−k −Q||L2(P )

= oP (1).

Thus, EknZI{Û ̸= U} = oP (1). Averaging over k gives EnZI{Û ̸= U} = oP (1), and so ψ̂+
T ≤ ψ+

T + oP (1).

Now, we turn to the lower bound, which is substantially more difficult. We wish to show ψ̂+
T ≥ ψ+

T−oP (1)
whether or not Q̂−k converges to Q. For each k ∈ [K], define ψ̂+(k) by:

ψ̂+(k) = max
ēk∈En,k(Λ)

EknY Z/ēk subject to

(
EknQ̂−kZ/ēk
EknZ/ēk

)
=

(
EknQ̂−kZ/ê

EknZ/ê(X)

)
(37)

where En,k(Λ) is the projection of En(Λ) onto the coordinates in Fk. Clearly, ψ̂+
T×EnZ/ê(X) ≥

∑
k ψ̂+(k)|Fk|/n,

so it suffices to prove ψ̂+(k) ≥ ψ+
T − oP (1) for each k.

We will make some notational simplifications. The remainder of the proof will focus on showing ψ̂+
T (1) ≥

ψ+
T − oP (1). For convenience, we will assume F1 = [n1] where n1 ∼ n/K almost surely. As an additional
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simplification, we will assume that ε/2 ≤ êi ≤ 1 − ε/2 for all i. Mechanically, this can always be done
by “trimming” the estimated propensity score. Condition 1 implies the trimming has no effect in large
samples, so it is only used as a theoretical device to simplify calculations. Finally, recall that we have
defined Ŵi = Zi(1− êi)/êi.

We will construct an propensity vector ē∗ satisfying the constraints of (37) with the property that

ψ̄1 := E1
nY Z/ē

∗ converges to ψ+
T . Since ψ̂+(1) ≥ ψ̄1, this will show ψ̂+(1) ≥ ψ+

T − oP (1). A natural first
idea is to take the idealized propensity score ē∗i = (1+ θi(1− ê(Xi))/ê(Xi))

−1, where θi = ΛUi . This mimics
the true worst-case propensity score, but uses ê(Xi) in place of e(Xi) to satisfy the odds-ratio constraint. It
is not hard to see that this would result in a sharp estimate of ψ+

T by classic IPW logic.

E1
nY Z(1 + θ 1−ê(X)

ê(X) ) = E1
nY Z(1 + θ 1−e(X)

e(X) ) +O(||Y Z||L1(En) × ||1/e− 1/ê||∞)

= E1
nY Z/Ē+ + oP (1)

= ψ+
T + oP (1)

(38)

However, this choice of ē∗ is not guaranteed to satisfy the “balancing” constraints of (37). Our construction
perturbs this “ideal” choice to gain feasibility.

Our construction will be somewhat convoluted, so it is worth taking a moment to explain the high-level
idea. First, we discard a small number of gross “outliers” to produce a set of “inliers” Ij∗ whose fitted
quantiles are relatively easy to balance. We then produce a feasible propensity ē∗ by assigning the outliers
the nominal propensity score ê(Xi) and perturbing the inliers’ idealized propensity score by a small amount.
We show the resulting lower bound ψ̄1 = E1

nY Z/ē
∗ is a consistent (albeit impractical) estimator of ψ+

T .
We start by extracting a set of inliers Ij∗ ⊆ [n1] in the following fashion: set I1 = [n1], and for

2 ≤ j ≤ 4β + 3, recursively define Ij by:

Ij = {i ∈ Ij−1 : |Q̂i − Q̄j−1| ≤ 2(j−1)n−(j−1)/4} (39)

where Q̄j−1 = (
∑
i∈Ij−1

ŴiQ̂i)/(
∑
i∈Ij−1

Ŵi) is the weighted average value of Q̂i within Ij−1. We set

I4β+4 = ∅. Let j∗ be the first stage in the above procedure at which an n
−1/8
1 fraction of the “weight” in Ij

comes from outliers:

j∗ = min

{
j :

∑
i∈Ij\Ij+1

Ŵi∑
i∈Ij

Ŵi

≥ n
−1/8
1

}
(40)

It is easy to verify that j∗ is well-defined (the set is not empty) whenever Zi = 1 for some index i ≤ n1. For
completeness, when that does not happen, we arbitrarily set j∗ = 4β + 3.

With this definition of j∗, we ensure the total “weight” on discarded outliers is asymptotically negligible.

Since
∑
i∈Ij\Ij+1

Ŵi ≤ n
−1/8
1

∑
i∈Ij

Ŵi for all j < j∗, we have:∑
i̸∈Ij∗

Ŵi =
∑
j<j∗

∑
i∈Ij\Ij+1

Ŵi ≤ (4β + 2)n
−1/8
1

∑
i∈I1

Zi(1− êi)/êi = oP (n1).

Therefore the inliers Ij∗ will constitute most of the “weight” in the sample, i.e.

1

n1

∑
i∈Ij∗

Ŵi =
1

n1

n1∑
i=1

Ŵi − oP (1) ≥ (2/ε)
1

n1

n1∑
i=1

Zi − oP (1) (41)

We now perturb the idealized propensity for inliers in Ij∗ . Set Ri = (Q̂i − Q̄j∗)I{j∗ ̸= 4β + 3}+ I{j∗ =
4β + 3}, and define λ1, λ2, α by:

λ1 =

∑
i∈Ij∗

ŴiRi(1− θi)∑
i∈Ij∗

Ŵi|Ri|
× (1 + I{j∗ ̸= 4β + 3})
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λ2 =

∑
i∈Ij∗

Ŵi(1− θi − λ1I{Ri ≥ 0})∑
i∈Ij∗

Ŵi

α = min{1, (|λ1|+ |λ2|)/(1− Λ−1)}.

Finally, construct ē∗ by:

1/ē∗ =

{
1/êi if i ̸∈ Ij∗
1 + 1−êi

êi
(α+ (1− α)(θi + λ1I{Ri ≥ 0}+ λ2)) if i ∈ Ij∗ .

We may verify that, with probability tending to one, we were successful in satisfying the constraints of
(37).

The odds-ratio condition is satisfied as follows. If α = 1 or i ̸∈ Ij∗ , the odds ratio condition for i is

satisfied trivially, so we proceed assuming α = |λ1|+|λ2|
Λ−1−1 and i ∈ Ij∗ . For the upper portion of the odds-ratio

condition:

(1− ēi)/ēi
(1− êi)/êi

= α+ (1− α) (θi + λiI{Ri ≥ 0}+ λ2)

≤ α (1− Λ + Λ) + (1− α) (Λ + |λ1|+ |λ2|)

= Λ + (|λ1|+ |λ2|)
(

1− Λ

1− Λ−1
+ (1− α)

)
≤ Λ + (|λ1|+ |λ2|) (−Λ + 1)

≤ Λ

For the lower portion of the odds-ratio condition:

(1− ēi)/ēi
(1− êi)/êi

= α+ (1− α) (θi + λiI{Ri ≥ 0}+ λ2)

≥ α
(
1− Λ−1 + Λ−1

)
+ (1− α)

(
Λ−1 − |λ1| − |λ2|

)
= Λ−1 + (|λ1|+ |λ2|)

(
1− Λ−1

1− Λ−1
+ α− 1

)
= Λ−1 + α (|λ1|+ |λ2|)
≥ Λ−1

We now proceed to balancing. If
∑n1

i=1 Ŵi = 0, we balance everything vacuously, so we proceed assuming
otherwise. Our first substantive calculation verifies that ē∗ balances ones, i.e. E1

nZ/ē
∗ = E1

nZ/ê(X):

E1
n(Z/ē

∗ − Z/ê(X)) =
1

n1

∑
i∈Ij∗

Ŵi(α+ (1− α)(θi + λ1I{RI ≥ 0}+ λ2)− 1)

= (1− α)
1

n1

(
λ2
∑
i∈Ij∗

Ŵi −
∑
i∈Ij∗

Ŵi(1− θi − λ1I{Ri ≥ 0})
)

= 0

The final equality holds by the definition of λ2.
To verify that ē∗ also balances Q̂−k with probability tending to one, we use the following decomposition:

E1
nQ̂Z(1/ē

∗ − 1/ê(X)) = I{j∗ ̸= 4β + 3} × Q̄j∗E1
nZ(1/ē

∗ − 1/ê(X)) (42)

+ I{j∗ ̸= 4β + 3} × E1
n(Q̂− Q̄j∗)Z(1/ē

∗ − 1/ê(X)) (43)

+ I{j∗ = 4β + 3} × E1
nQ̂Z(1/ē

∗ − 1/ê(X)) (44)
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Since ē∗ balances constants, (42) is also zero.
The term (43) requires a lengthier argument. On the event j∗ ̸= 4β + 3, we have E1

n(Q̂− Q̄j∗)Z(1/ē
∗ −

1/ê(X)) = E1
nRZ(1/ē

∗−1/ê(X)), which the following calculation shows is identically zero when j∗ ̸= 4β+3:

E1
nRZ(1/ē

∗ − 1/ê) =i (1− α)
1

n1

( ∑
i∈Ij∗

ŴiRi(1− θi)− λ1
∑
i∈Ij∗

ŴiRiI{Ri ≥ 0}
)

=ii (1− α)
1

n1

( ∑
i∈Ij∗

ŴiRi(1− θi)−
∑
i∈Ij∗

ŴiRi(1− θi)×
∑
i∈Ij∗

ŴiRiI{Ri ≥ 0}
1
2

∑
i∈Ij∗

Ŵi|Ri|

)
=iii 0

Step i follows since
∑
i∈Ij∗

ŴiRi = 0 on the event {j∗ ̸= 4β + 3}, step ii substitutes in the definition of λ1,

and step iii exploits the identity
∑
i∈Ij∗

ŴiRiI{Ri ≥ 0} = 1
2

∑
i∈Ij∗

Ŵi|Ri|:

1

2

∑
i∈Ij∗

Ŵi|Ri| =
1

2

∑
i∈Ij∗

ŴiRiI{Ri ≥ 0}+ 1

2

∑
i∈Ij∗

Ŵi(−Ri)I{Ri < 0}

=
1

2

∑
i∈Ij∗

ŴiRiI{Ri ≥ 0}+ 1

2

( ∑
i∈Ij∗

ŴiRi −
∑
i∈Ij∗

ŴiRiI{Ri < 0}
)

=
∑
i∈Ij∗

ŴiRiI{Ri ≥ 0}

Thus, (43) = 0.
The final term (44) is more subtle. For any i, j ∈ I4β+3, |Q̂i − Q̄4β+2|, |Q̂j − Q̄4β+2| ≤ 2(4β+2)n−(β+1/4),

so |Q̂i − Q̂j | ≾ n−(β+1/4). However, by Condition N, all distinct values of Q̂i are separated by distance n−β

with probability approaching one. Thus, with high probability, all values of Q̂i in I4β+3 are identical to a

constant Q̂0. In that case (44) = Q̂0 × E1
nz(1/ē

∗ − 1/ê(X)) = Q̂0 × 0.
Combining these various cases yields the conclusion E1

nQ̂Z(1/ē
∗ − 1/ê(X)) = 0 with probability tending

to one. Thus, ē∗ is (with high probability) feasible in (37).
Next, we check that ψ̄1 converges to ψ+

T .
The first step in this consistency calculation is to prove that λ1 = oP (1) and λ2 = oP (1). Conditional on

{(Xi, Zi)}i≤N and Q̂−k, the only randomness remaining in λ1 comes from the θi values. For observations i
with Zi = 1, θi takes on the value Λ−1 with probability τ and Λ with probability 1− τ . Since τ = Λ/(Λ+1),
simple algebra gives E[(1 − θi)|Zi = 1, Xi] = 0. Hence, E[λ1|G] = 0 where G = σ({(Xi, Zi)}i≤N , Q̂−k).

Chebyshev’s inequality implies λ1 = OP (
√

Var(λ1|G)), so it suffices to show the conditional variance of λ1
vanishes. Note that Var(θi|G) ≤ c(Λ) for some constant c(Λ), and 1 − θi is (conditionally) independent of
1− θj when i ̸= j. Therefore, we may write:

Var(λ1|G) ≾
∑
i∈Ij∗

(ŴiRi)
2

(
∑
i∈Ij∗

Ŵi|Ri|)2
I{j∗ ̸= 4β + 3}+

∑
i∈Ij∗

(ŴiRi)
2

(
∑
i∈Ij∗

Ŵi|Ri|)2
I{j∗ = 4β + 3}. (45)

Without loss of generality, assume that the exponent α in Condition N is zero. This can always be achieved
by rescaling Q̂i by n

−α and making a corresponding change to the lower bound β. Hence:∑
i∈Ij∗

(ŴiRi)
2

(
∑
i∈Ij∗

Ŵi|Ri|)2
I{j∗ ̸= 4β + 3} ≤i

∑
i∈Ij∗

(ŴiRi)
2

(
∑
i∈Ij∗\Ij∗=1

Ŵi|Ri|)2
I{j∗ ̸= 4β + 3}

≤ii

∑
i∈Ij∗

Ŵ 2
i R

2
i

(
∑
i∈Ij∗\Ij∗+1

Ŵi2j
∗n−j∗/4)2

I{j∗ ̸= 4β + 3}
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≤iii

∑
i∈Ij∗

Ŵ 2
i (2

j∗n−(j∗−1)/4)2

(
∑
i∈Ij∗\Ij∗+1

Ŵi2j
∗n−j∗/4)2

I{j∗ ̸= 4β + 3}

≤iv n1/2 ×
∑
i∈Ij∗

Ŵ 2
i

(n
−1/8
1

∑
i∈Ij∗

Ŵi)2
I{j∗ ̸= 4β + 3}

≾v
n3/4∑
i∈Ij∗

Ŵi

I{j∗ ̸= 4β + 3}

=vi OP (n
−1/4)

Step i makes the denominator smaller by removing positive terms. Step ii is justified because, on the event
j∗ ̸= 4β + 3, |Ri| ≥ 2j

∗
n−j

∗/4 for all i ∈ Ij∗\Ij∗+1 by (39). Step iii requires some more justification.

If j∗ = 1, then Ri = |Q̂i − Q̄1| ≤ 2maxi |Q̂i| ≤ 2. If 1 < j∗ ̸= 4β + 3, then |Ri| = |Q̄i − Q̄j∗ | ≤
|Q̄i − Q̄j∗−1| + |Q̄j∗−1 + Q̄j∗ | ≤ 2j

∗
n−(j∗−1)/4. In either case, |Ri| ≤ 2j

∗
n−(j∗−1)/4. Step iv rearranges

and invokes the definition of j∗, while step v uses the fact that n1 ≤ n and our trimming assumption on êi
ensures the ratio of Ŵi/Ŵ

2
i is bounded above and below when Zi ̸= 1. Step vi holds by (41).

The second term (45) can be controlled by a similar calculation. In fact, it is easier since Ri = 1 on the
event j∗ = 4β + 3. That omitted calculation shows that Var(λ1|G) = oP (1), and hence λ1 = oP (1).

To show λ2 = oP (1), start by writing λ2 as the difference of two terms.

λ2 =

∑
i∈Ij∗

Ŵi(1− θi)∑
i∈Ij∗

Ŵi

− λ1

∑
i∈Ij∗

ŴiI{Ri ≥ 0}∑
i∈Ij∗

Ŵi

The first term is oP (1) by the same argument as the one for λ1 when j∗ = 4β + 3. The second term is the
product of λ1 and a quantity less than one. Since λ1 = oP (1), this shows the second term is oP (1) as well.

Finally, we ready to show that ψ̄1 = ψ+
T − oP (1). By (38), it suffices to show the distance between

E1
nY Z/ē

∗ and E1
nY Z(1 + θi

1−ê(Xi)
ê(Xi)

) is vanishing. We expand this difference as the sum of several terms:

E1
nY Z/ē

∗ − E1
nY Z(1 + θi

1−ê(X)
ê(X) ) =

1

n1

∑
i ̸∈Ij∗

ŴiYi(1− θi) (46)

+ α
1

n1

∑
i∈Ij∗

ŴiYi(1− θi) (47)

+ (1− α)
1

n1

∑
i∈Ij∗

ŴiYi(λ1I{Ri ≥ 0}+ λ2). (48)

The term (46) can be handled as follows:∣∣∣∣∣∣ 1n1
∑
i ̸∈Ij∗

ŴiYi(θi − 1)

∣∣∣∣∣∣ ≾
 1

n1

∑
i̸∈Ij∗

Ŵ 2
i

1/2(
1

n1

n1∑
i=1

|Yi|2
)1/2

≾

 1

n1

∑
i̸∈Ij∗

Ŵi

1/2

(E[Y 2] + oP (1))

= oP (1)

where we have used (41) in the final step. To analyze (47), use the fact that |λ1| ∨ |λ2| = oP (1), and
hence α = oP (1). Since 1

n1

∑n1

i=1 Ŵi|Yi| = OP (1), the product vanishes. Finally, (48) is smaller than

OP (1)× 1
n1

∑n1

i=1 Ŵi|Yi|(|λ1|+ |λ2|) = oP (1).

Putting it all together, we have shown E1
nY Z/ē

∗ − E1
nY Z(1 + θi

1−ê(X)
ê(X) ) = oP (1), and hence ψ̂+(1) ≥

ψ̄1 = ψ+
T − oP (1).
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C.10 Proof of Theorem 4

In this section, we prove Theorem 4. For brevity, we only prove the validity of the bootstrap upper bound
for ψ+

T , and restrict our attention to the case where the nominal propensity score is estimated by logistic
regression. By symmetry, the result extends to ψ−

T and the other estimands of interest, and the proof can
easily be modified to handle other parametric propensity models like probit regression. As in the proof of
Theorem 3(i), we abbreviate Q̂τ (x, 1) and Qτ (x, 1) by Q̂(x) and Q(x), respectively, and results for K-fold
cross-fit linear quantile estimates hold by viewing the folds as random and interacting the features with the
fold identities to produce features in Rk×K .

For convenience, we restate the theorem in this special case to make the regularity conditions more
precise.

Theorem 4(i). (Inference for ψ+
T)

Assume Conditions 1, 2, and 3.(i). Suppose that the nominal propensity score ê is consistently estimated by
logistic regression, and the covariate space X is bounded.2 Suppose the number of bootstrap samples B ≡ Bn
tends to infinity. Then we have:

lim inf
n→∞

P(ψ+
T ≤ Q1−α({ψ̂+

b }b∈[B]) ≥ 1− α

for all α ∈ (0, 1).

Proof. We begin by introducing some notation. For i ≤ n, let (X∗
i , Y

∗
i , Z

∗
i ) ∼ Pn be bootstrap observations,

and let E∗
n = 1

n

∑n
i=1 δ(X∗

i ,Y
∗
i ,Z

∗
i )

denote the bootstrap empirical distribution. Let θ̂∗ be the logistic regression

coefficient vector estimated on the bootstrap dataset, and set ê∗(x) = 1/[1 + exp(−x⊤θ̂∗)]. Further define
the bootstrap ZSB constraint set E∗

n(Λ) by:

E∗
n(Λ) =

{
ē ∈ Rn : Λ−1 ≤ ēi/[1− ēi]

ê∗(X∗
i )/[1− ê∗(X∗

i )]
≤ Λ for all i ≤ n

}
and the bootstrap quantile balancing estimator ψ̂+

∗ by:

ψ̂+
∗ = max

ē∈E∗
n(Λ)

∑n
i=1 YiZi/ēi∑n
i=1 Zi/ēi

s.t.

(
E∗
nQ̂(X)Z/ē

E∗
nZ/ē

)
=

(
E∗
nQ̂(X)Z/ê∗(X)

E∗
nZ/ê

∗(X)

)
.

The estimated quantile Q̂ in the definition of ψ̂+
∗ comes from the original dataset, but the rest of the argument

will go through even if it is re-estimated within each bootstrap sample.
The first step of the proof is to reduce our task to that of proving bootstrap consistency for a much simpler

estimator under the assumption that Q(x) = β⊤
0 h(x). Define the bootstrap feature balancing estimator ψ̄+

∗
by:

ψ̄+
∗ = max

ē∈E∗
n(Λ)

∑n
i=1 YiZi/ēi∑n
i=1 Zi/ēi

s.t. E∗
nh(X)Z/ē = E∗

nh(X)Z/ê∗(X).

Adding constraints to the balancing problem reduces the objective, so ψ̂+
∗ ≥ ψ̄+

∗ deterministically and the

quantiles of the bootstrap distribution of ψ̂+
∗ are above the quantiles of the bootstrap distribution of ψ̄+

∗ . A

further reduction can be obtained by defining the estimator ψ̊+
∗ by:

ψ̊+
∗ =

E∗
n(Y − γ̂∗⊤h(X))Z(1 + Λsign(Y−Q(X))(1− ê∗(X))/ê∗(X)) + E∗

nγ̂
∗⊤h(X)Z/ê∗(X)

E∗
nZ/ê

∗(X)

γ̂∗ = argmin
γ∈Rk

E∗
nρτ (Y − γ⊤h(X))Z 1−ê∗(X)

ê∗(X) .

2This is needed for logistic regression to be compatible with the strong overlap requirement of Condition 1, although
examining the proof shows it could be relaxed to the existence of certain exponential moments as in [60], Assumption C.1(3).
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This estimator is not actually implementable as it depends on the true quantile Q through the term sign(Y −
Q(X)). Still, the proof of Lemma 4 implies ψ̄+

∗ ≥ ψ̊+
∗ , so it suffices to prove the validity of the percentile

bootstrap for the estimator ψ̊+
∗ .

The rest of this proof will be dedicated to proving the validity of the percentile bootstrap for the estimator
ψ̊+
∗ . Let θ0 be the true logistic regression coefficient vector. For any θ ∈ Rd, β ∈ Rk, ψ ∈ R, define the

estimating equation mθ,β,ψ(x, y, z) by:

mθ,γ,ψ(x, y, z) =

 x(z − 1/(1 + e−θ
⊤x))

h(x)(τ − I{γ⊤h(x) < 0})zeθ⊤x

(y − γ⊤h(x))z(1 + Λsign(y−Q(x))eθ
⊤x + γ⊤h(x)z(1 + e−θ

⊤x)− ψz(1 + e−θ
⊤x)

 .
and define M(θ, γ, ψ) = Pmθ,γ,ψ(X,Y, Z). If the linear quantile model is correctly specified (i.e. Q(x) =
β⊤
0 h(x) for some β0 ∈ Rd), then (θ0, β0, ψ

+
T ) solve the estimating equation M(θ0, γ0, ψ

+
T ) = 0. Meanwhile,

the estimators (θ̂∗, γ̂∗, ψ̊+
∗ ) (approximately) solve the bootstrap estimating equation:

M∗
n(θ̂

∗, γ̂∗, ψ̊+
∗ ) = E∗

nmθ̂∗,γ̂∗,ψ̊+
∗
(X,Y, Z) = oP (n

−1/2).

Therefore, we are in a position to apply the standard theory of bootstrap Z-estimators, at least in the
correctly-specified case Q(x) = β⊤

0 h(x).
Specifically, we will apply Theorem 10.6 in [32], but prove bootstrap consistency by more direct means.

Since logistic regression and weighted quantile regression are both convex optimization problems, the con-

sistency θ̂∗
p−→ θ0 and γ̂∗

p−→ β0 follow from the bootstrap law of large numbers and Theorem 2.7 in [40].

From this, the result ψ̊+
∗

p−→ ψ+
T follows from the same argument used in the proof of Theorem 3.(i), with

all applications of the law of large numbers replaced by the bootstrap law of large numbers. It remains to
check Assumption (C) in Theorem 10.6 of [32]). Exercise 10.5.5 in [32] verifies this for the logistic regression

estimating equation x(z − 1/(1 + e−θ
⊤x)). The quantile regression estimating equation eventually lives in

the product of the VC class F and the smooth parametric class G:

F = {(x, y, z) 7→ (τ − I{γ⊤h(x) < 0} : γ ∈ Rd, }

G = {(x, y, z) 7→ h(x)zeθ
⊤x : ||θ − θ0|| ≤ 1}.

Therefore, Assumption (C) follows from Theorem 9.15 in [32] and the dominated convergence theorem. The
same arguments verify this condition for the final estimating equation.

Thus, we have shown that if Q(x) = β⊤
0 h(x) for some β0 ∈ Rd, then all the requirements for the proof of

Theorem 10.16 in [32] are satisfied, and hence the percentile bootstrap based on ψ̊+
∗ will be asymptotically

valid.
Finally, it remains to remove the assumption that the linear quantile model is correctly specified. If

Q(x) ̸= β⊤h(x) for any β ∈ Rd, then we may once again lower bound ψ̂+
∗ by the estimator that balances

h(x) and the true quantile Q(x). This brings us back to the well-specified case, and the preceding arguments
imply the validity of the bootstrap upper confidence bound.
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