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Abstract

This note presents a microfoundation for the Nash-in-Kalai model proposed by the

companion paper Dorn (2025). The microfoundation is a demands game with revoca-

tion costs based on Dutta (2012). As opportunities to contract become instantaneous

and the marginal cost of the first dollar of concession tend to infinity, gains from trade

tend to zero and the bargaining solution tends to an instantaneous (and by extension

a discrete) dynamic Kalai proportional bargaining solution. The game extends Dutta’s

setup to include repeated bargaining.

This note presents a microfoundation for the Nash-in-Kalai model (Dorn, 2025): a Nash

equilibrium in recursively defined Kalai proportional bargains. Collard-Wexler et al. (2019)

present a microfoundation for Nash-in-Nash, but it only applies to the transferable utility

case in which Nash-in-Nash and Nash-in-Kalai coincide.

Unlike Nash bargaining, the predicted outcome of Kalai proportional bargaining depends

on the scale of gains from trade. As a result, the microfoundation cannot depend solely on von

Neumann-Morgenstern utility, which is scale-invariant. Instead, this microfoundation builds

on Dutta (2012) to leverage concession costs to fix relative scales of utility. Kalai proportional

bargaining can also be microfounded through an arbitration game (Bossert, 1994), while Nash

bargaining can be microfounded through demands (Nash, 1953), alternating offers (Binmore

et al., 1986), and other games; both can be microfounded through liquidity constraints (Hu

and Rocheteau, 2020).
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The game is a series of periods in which contracts can be reached at one of two stages:

Nash bargaining between jointly feasible price demands, or the opportunity to make a costly

concession after revelation of jointly infeasible demands. Agreements are made between the

two sides of the market: hospitals (i.e. suppliers), who always prefer higher prices, and insurers

(i.e. retailers), who always prefer lower prices.

I show two main results for this game. First, I show that as the length of a period tends

to zero, the predicted agreement tends to the Kalai proportional solution, with the ratio of

bargaining weights equal to the ratio of first derivatives in the limit. This result is essentially

an extension of Dutta (2012) to multilateral games. Second, I show that the implied agree-

ment is the same if the value of disagreement is replaced by Binmore et al. (1989)’s impasse

point in discrete time. This result essentially follows by the Kalai proportional bargaining

solution’s step-by-step property (Kalai, 1977, Roth, 1979, Dorn, 2025), and shows that the

continuous-time model implies a Nash-in-Kalai representation in discrete time.

I first describe a sequence of demands games indexed by n. I then show that as the

frequency of bargaining opportunities tends to infinity, any pure strategies Markov Perfect

equilibrium of the demands game tends to Kalai proportional bargaining.1 I then show that a

corresponding sequence of discrete time bargaining solutions of the instantaneous bargaining

game correspond to the dynamic Kalai proportional bargaining solution in discrete time.

1 The Demands Game

The sequence of discretely timed games is indexed by n. I avoid notation for period lengths

by instead showing that as gains from trade tend to zero in n, the implied solution approaches

Nash-in-Kalai uniformly. Taking period lengths to zero generally implies increasingly small

1I mainly use the Markov assumption to prevent renegotiation in equilibrium. Without it, the sides could
sustain an equilibrium with painful concessions by punishing forming the same contracts without concession.
Dutta (2024) shows that the microfoundation only requires renegotiation-proof strategies when repeatedly
attempting to bargain over a fixed asset. It is likely that this property relates to Myerson (1981)’s notion
of concavity in planning: under Kalai proportional or utilitarian bargaining, ex ante negotiations produce a
weakly better expected value than ex post negotiations, so that it can never be strictly Pareto-improving to
replace the outcome of ex ante bargaining with the outcome of ex post bargaining.
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games from trade, and therefore implies a Nash-in-Kalai limit.

In game n, time is discrete and runs from t = 0 to infinity. In period t, a contract structure

Ct emerges. In period t, the contract structure which emerges is a set of lengths hospital

i-insurer j lengths ℓijt,(n) and a set of i − j prices pijt,(n) ⊆ P , where P is a closed, convex

subset of R.2 If i and j do not reach a contract, then ℓijt,(n) = pijt,(n) = 0. I write the set of

contracts that emerge as Ct. I assume that at every stage of negotiations, upstream hospitals

prefer higher prices while downstream insurers prefer lower prices. A contract corresponds to

a constant per-unit rate in place for the full length of the contract: for example, lump-sum

payments would fit in the model as a price per period amortized over the contract.

There is no uncertainty. The set of insurer and hospital indices remains the same in every

game. I assume that if i and j contract in period t, the agreement will be in place for the

known, exogenous value ℓ∗ijt,(n).

Timing in period t is as follows:

1. The board of directors of every hospital i and insurer j meet with their delegates, who

will simultaneously bargain with every potential partner with whom they do not have

an agreement.

• Hospital delegates and insurer delegates choose a price demand to state publicly.

The demand is chosen to maximize a weighted average of their employer’s net

present value profits and a personal concession cost they will face if they agree

to a contract that is worse than their demand. The hospital delegates demand

a minimum price p
¯
H
Demand

and the insurer delegates demand a maximum price

p̄MDemand.

2. The corresponding delegates for each ij pair without a contract in place from the

previous period simultaneously meet with their authorized demands. If an ijt pair has

jointly feasible demands p
¯
H
ijt,Demand

≤ p̄Mijt,Demand, the delegates reach a jointly feasible

2The game immediately generalizes to other vertical markets by treating hospitals as an upstream market,
insurers as a downstream market, and prices as a real-valued numeraire the sides bargain over.
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contract by Nash bargaining over firm profits, treating their demands as disagreement

points and taking equilibrium strategies of other pairs as given. (If this is not well-

defined, the pair choose the average demand.)

3. Each delegate of an ij pair without a contract has the opportunity to concede to the

other side’s demands. Conceding means adopting the other delegate’s demand. Without

loss of generality, I write concession costs in units of employer net present value profits.

Conceding has an associated cost of cHijt,(n)(p
¯
H
Demand

− p̄MDemand) and cHijt,(n)(p
¯
H
Demand

−

p̄MDemand). The concession cost functions are continuous, strictly increasing for positive

concessions, equal to zero and have an infinite right-differentiable at zero, and are

uniformly lower-bounded by functions with these properties.

4. Each ij pair without a contract meets simultaneously.

• If the new demands are jointly feasible, they reenter the same joint bargaining

process as in Stage 2.

• If the new demands are jointly infeasible, ij do not form a contract in period t.

5. The hospitals and insurers obtain flow profits: vHit (Ct, Rt) = πH
it,(n)(Ct) + rHi,(n)Rijt for

hospital i where rHi is any new contract negotiation cost, and analogously vMjt (Ct, Rt) =

πM
jt,(n)(Ct) + rMj,(n)Rijt for insurer j.

The outcome of each stage is always immediately announced to all parties.

When the delegates arrive with jointly-unachievable demands, they play a one-shot game

with a simultaneous payoff matrix adapted from Dutta and depicted in Appendix Table 1. In

Appendix Table 1, I write the value functions with agreement (at the anticipated concession

decisions) as V H and V M and the value with disagreement as V H
D and V M

D . The agreement

value functions include any effect of the negotiated contract on any other agreements reached

through concession in the period. I later show that there is no concession in equilibrium, so

that the relevant value functions are also the value functions at the equilibrium simultaneous
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agreements. If concession costs are too high, neither delegate will be willing to concede to a

contract that only improves their employer’s profits slightly. The infinite right-derivative at

zero ensures that if the demands are close enough, then both delegates will prefer to concede

despite the incurred concession cost.

Table 1: After incompatible demands in Stage 2 (p
¯
H > p̄M), payoffs in Stage 3 depending on

whether hospital delegate (rows) and insurer delegate (columns) concedes or sticks to their
initial demands. Table is adapted from Dutta (2024). I omit the ijt subscripts for brevity.
p∗ is the hypothetical Nash bargained price if both delegates concede and the demands are
reversed.

Concede (C) Stick (S)

C (V H(p∗)− cH(p
¯
H − p̄M), V M(p∗)− cM(p

¯
H − p̄M)) (V H(p

¯
H)− cH(p

¯
H − p̄M), V M(p

¯
H))

S (V H(p̄M), V M(p̄M)− cM(p
¯
H − p̄M)) (V H

D , V M
D )

The concession costs constrain the contracts that can emerge in equilibrium. Suppose

jointly compatible demands will lead to the hospital getting the most favorable deal: a take

it or leave it outcome that gives the hospital all surplus and leaves the insurer with their

disagreement value. Consider a subgame in which the insurer demands a slightly better deal.

The insurer’s delegate will not pay a concession cost to concede and obtain the firm’s dis-

agreement value. On the other hand, if the new demand is close enough to the disagreement

value, the hospital’s delegate will prefer to concede (an arbitrarily small cost) to avoid dis-

agreement (a fixed cost to the hospital given n). The same logic can be applied to lopsided

deals: the concession costs constrain how much surplus each side can obtain. The higher one

side’s concession costs, the better of a deal they guarantee themselves in equilibrium. In the

limit as the game becomes instantaneous and gains from trade tend to zero, the constraint

becomes driven by the derivative of the cost functions at zero.

The particular form of concession costs enables a scale varying solution in the limit. If the

ratio of marginal concession costs changed over time, the solution would be instantaneous but

not discrete Kalai proportional bargaining. If the concession costs were a function of value

conceded, it appears the equilibrium would correspond to Nash bargaining at the margin

in a similar manner to Coles and Muthoo (2003). If the concession costs were borne by the
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delegates but set by firms that were indifferent to conceding, then there would be equilibria

with concession and the concession costs might not have any bite.

The model could be generalized in a few directions at the cost of additional notation. I

use Nash bargaining in Stage 2 to be tongue-in-cheek. Any other bargaining solution would

work. I make contract lengths exogenous to ensure that the space of feasible contract values

is convex. The model could likely be extended to enable endogenous contract lengths. Under

this game and Dutta (2024)’s game, a delegate pays the same concession cost whether or not

the other side concedes; in Dutta (2012)’s original game, the concession cost is paid based

on the difference between demanded and realized price, with the same result.

I now write out value functions for the realized contract state. I will assume players follow

Markov strategies, so that value functions only depend on realized contracts and negotiation

costs (i.e. realized contracts and the previous period’s realized contracts). Suppose the players

follow strategies σ̂ which generate period t+1 contracts σ̂t+1(Ct). I define the corresponding

value functions as:

V H
it,(n)(Ct | Ct−1) =

πH
it,(n)(Ct)−

∑
j r

H
i,(n)Rijt + β(n)V

H
it+1,(n)(σ̂t+1(Ct) | Ct)

1− β

V M
it,(n)(Ct | Ct−1) =

πM
jt,(n)(Ct)−

∑
i r

M
j,(n)Rijt + β(n)V

M
jt+1,(n)(σ̂t+1(Ct) | Ct)

1− β
.

In that equation, Rijt is an indicator for ij forming a new contract in period t.

2 Continuous-Time Results

I will assume some structure on the value functions which I expect to hold in many vertical

market bargaining models. I will make use of the value of ij deviating to a new contract p

while holding fixed the outcome of other bargains. I write these unilateral deviation value

functions as V H
ijt(pijt | σ̂,Ct−1) and V M

ijt (p | σ̂,Ct−1). It is not obvious at this stage that

unilateral-deviation value functions are the right deviation value in this bargaining game. I
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show there is no concession in equilibrium, so that these are the relevant value functions.

Assumption 1 (Monotone and differentiable value function). All strategies are Markov.

When bargaining in Stage 2 or choosing whether or not to concede in Item 3, hospitals

strictly prefer higher prices and insurers strictly prefer lower prices inclusive of any response

through subsequent concession decisions and negotiations in period t. The expected value

functions of a bargained initial price p at the expected other equilibrium contracts in the

same period is written as V (p | σ̂,Ct−1) and is differentiable with bounded derivatives as

follows:

0 < εB ≤
−∂V H

ijt(pijt | σ̂,Ct−1)

∂pijt
,
∂V H

ijt(pijt | σ̂,Ct−1)

∂pijt
≤ B

for uniformly bounding constants ε, B > 0.

Since one side strictly prefers higher prices and the other side strictly prefers lower prices,

Assumption 1 allows me to write the value concession game as a value-based price concession

game. Assumption 1 could be relaxed to a Lipschitz continuity-type assumption.

The substantive idea of this assumption is that prices have monotonic effects. The first

half that includes downstream effects rules out the delegates choosing to form a contract

through jointly feasible demands in order to sustain an equilibrium in other simultaneous

demands. Under Assumption 1, if a hospital and insurer arrive with jointly feasible demands,

they could do better by deviating to the other’s demand despite any effects on the down-

stream contracts.

The value function derivative component of Assumption 1 ensures the hold-fixed contract

deviation value functions are differentiable. As a result, the value functions are invertible in

bargained prices. For example, if the price domain P includes only weakly positive prices,

then equilibrium hospitals generally prefer strictly higher prices and insurers prefer strictly

lower prices. The property is likely to hold in other settings if which higher prices have

positive spillovers on other prices for appropriately defined price domains P .
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Lemma 1. Under Assumption 1, for every game n, subgame Ct−1, triplet ijt without a con-

tract in place under that subgame, and associated equilibrium strategies σ̂(n), there are prices

pHijt,(n),D and pMijt,(n),D that make the hospital and insurer, respectively, indifferent between

agreement at that price and disagreement under the expected contracts formed by other pairs

in equilibrium.

I add an assumption to rule out certain nuisance behavior.

Assumption 2. If hjt do not reach a contract in a period t subgame and ijt do reach a

contract through negotiation after initial jointly-feasible demands, then hnt continue to not

reach a contract if either i or j strengthens their demand.

Assumption 2 rules out a certain edge case in which pairs reach a contract through Nash

bargaining between jointly feasible contracts, but neither side can make a stronger demand

because it would lead to an anticipated contract that changes other pairs’ concession decision.

Without Assumption 2, there is no concession in equilibrium, but the contract outcome may

be driven by the effect on others’ concession decisions in the same period. The content is

minimal if, as in my setting, equilibrium networks are fairly complete.

The following lemma shows that there is no concession in equilibrium. As a result, in any

equilibrium the firms must negotiate over an individual contract in a way that is optimal

taking the outcome of other bargains as fixed. The best deviation over all demands is at

least as good as the best deviation over a single demand.

Lemma 2. Under Assumptions 1 and 2, for every game n with a pure strategy Markov

perfect equilibrium σ̂(n), every subgame contract is formed through equal demands.

I obtain Kalai bargaining strategies as the game tends to instantaneous offers and the

ratio of first marginal costs tends to some proportion.

Assumption 3 (Sequence of PSMPE tending to instantaneous). As the game index n tends

to infinity, bargaining becomes instantaneous in the sense that β(n) → 1 and the effect of
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disagreement becomes negligible: max{V H(pMD )−V H(pHD), 0},max{V M(pHD)−V M(pMD ), 0} =

on(1) uniformly in subgames and potential bargainers.

This is plausible in many games: the difference between agreeing to a contract now and

waiting a second and agreeing to essentially the same contract should be essentially nil.

Assumption 4 (First marginal costs tend to proportional). As the game index n tends to in-

finity, the ratio of first marginal costs tend to a fixed proportion in the sense that there are fi-

nite wH
i , w

M
j > 0 and a sequence of δn → 0 such that maxij supx∈(0,max{pMijt,D−pHijt,D,δn}]

c
ijt,(n)M

(x)

c
ijt,(n)H

(x)
−

wH
i

wM
j

= on(1).

The cost proportionality around zero is important to extending the Kalai proportional

results from instantaneous to discrete time. It will be important for the microfoundation that

as the contract shifts under impasse, the ratio of first marginal costs between the hospital

and insurer retain the same proportions. It is not important that the costs be proportional

on a price scale in particular, so long as the costs are in the same fixed units — costs could

be formed under a payment scale and I would obtain the same result.

The following result follows from an adapted version of Dutta (2012)’s argument.

Proposition 1. Suppose Assumptions 1, 2, 3, and 4 hold. Then the bargains tend to an

instantaneous Kalai proportional solution:

sup
Ct−1,Rijt,(n)=1,pMD >pHD

∣∣∣∣∣∣
V M
ijt

(
p̂ijt(Ct−1) | Ĉt−ij,(n)

)
− V M

ijt

(
pMijt,D | Ĉt−ij,(n)

)
V H
ijt

(
p̂ijt(Ct−1) | Ĉt−ij,(n)

)
− V H

ijt

(
pHijt,D | Ĉt−ij,(n)

) − wH
i

wM
j

∣∣∣∣∣∣ →n 0.

I offer the following intuition. The concession costs ensure that in every pure strategy

Nash equilibrium, there is no concession and both sides get sufficiently more than their

disagreement value that they cannot guarantee a better outcome by demanding more. As the

game tends to instantaneous, the gains from trade relative to waiting a period become small

and the infinite first marginal costs become binding. The particular form of the constraint

is that the ratio of gains from trade tend to the ratio of first marginal costs. This is a scale
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varying solution concept because the concession costs are made based on prices rather than

profits; fixing the ratio of concession costs fixes the relative value of profits.

3 Discrete-Time Results

The result in Proposition 1 gives a result about disagreeing over an ignorable period of

time. Kalai proportional bargaining has a special path independence property that makes

this instantaneous-bargaining limit extend to discrete time.

Proposition 2. Suppose Assumptions 1, 2, 3, and 4 hold. Let Ṽ H
ijt,(n)(0 | Ct−1) and Ṽ M

ijt,(n)(0 |

Ct−1) be the expected values if ij disagree in period t and remain in impasse until the next

period where another pair forms a contract. Suppose the value of agreement relative to impasse

is bounded. Then the bargains tend to an discrete-time Kalai proportional solution:

sup
Ct−1,Rijt,(n)=1,V M (p)>V M (0)

∣∣∣∣∣V
H
ijt,(n)(σ̂(Ct−1))− Ṽ H

ijt,(n)(0 | Ct−1)

V M
ijt,(n)(σ̂(Ct−1))− Ṽ M

ijt,(n)(0 | Ct−1)
− τij

∣∣∣∣∣ →n 0.

Proposition 2 justifies using a discrete-timed dynamic Kalai proportional bargaining

model even when real bargaining is conducted in continuous time: both the value of agree-

ment and of impasse are defined in discrete time. This justifies theoretical and empirical

analysis in discrete time.

Only Kalai proportional bargaining justifies estimating a discrete-time bargaining model

with a continuous timed underlying microfoundation in general nonstationary games. A bar-

gaining solution that generally returns the same contract after adding an additional post-

disagreement chance to bargain must have proportional character (Roth, 1979). As a result,

a comparable result for Nash-in-Nash bargaining would generally yield a differential equation

at the margin (Coles and Muthoo, 2003, O’Neill et al., 2004). Nash-in-Nash bargaining in

nonstationary environments with access to lump-sum transfers might be able to be micro-

founded, but only because Nash bargaining with access to lump-sum transfers is transferable

utility, and therefore has the same predictions as Kalai proportional bargaining.
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A Lemmas and Proofs

A.1 Lemmas

Lemma 3 (Dutta (2012), Proposition 2). Suppose σ̂ is a pure strategy Markov perfect equi-

librium of the game I have described in Proposition 1 under Assumption 1 but not necessarily

3 and 4. Suppose i and j could form a strictly Pareto-improving contract in period t. For

brevity, I omit the ijt, (n) subscripts. Then there is a unique y1, y2 ∈ (0, 1) that satisfies

y1 + y2 ≥ 1 and the following property about gains relative to disagreement

V H
(
y2p

H
D + (1− y2)p

M
D

)
− V H(pHD) = cH

(
(pMD − pHD)(y1 + y2 − 1)

)
V M

(
y1p

M
D + (1− y1)p

H
D

)
− V M(pMD ) = cM

(
(pMD − pHD)(y1 + y2 − 1)

)
,

then the pair (y1, y2) is unique.

Intuitively, y1 and y2 both decrease the left-hand sides to zero but increase the right-hand

sides, so there should be a fixed point. In addition, only one of y1 and y2 appear on the left-

hand side of any given equation. Consider the function ŷ1(y2) that chooses a ŷ1 to hold the

first equation with equality at any given y2. As y2 increases, the left-hand side of the first

equation decreases so ŷ1 + y2 must decrease. Therefore ŷ1(y2) must decrease faster than y2.

Applying a similar argument to the other equation ensures any fixed point is unique. The

next proposition shows the fixed point constrains the equilibrium bargain.
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Lemma 4 (Dutta (2012), Proposition 3). Suppose σ̂ is a pure strategy Markov perfect equilib-

rium of the game I have described in Proposition 1 under Assumption 1 but not necessarily

3 and 4. Suppose i and j could form a Pareto-improving contract in period t. Then their

equilibrium demands are equal and are bounded above and below by y1p
M
D + (1 − y1)p

H
D and

y2p
H
D + (1− y2)p

M
D , respectively, where y1 and y2 come from Lemma 3.

Lemma 5. For a given ij pair, let y1,(n), y2,(n) be the y1, y2 corresponding to Lemma 3 in

game n for a given ij pair. (If ij does not have a strictly Pareto-improving pair, choose some

y1, y2 ∈ (0, 1) satisfying y1+y2 = 1.) Under the conditions of Proposition 1, y1,(n)+y2,(n) → 1

with a convergence rate that is uniform in (i, j).

A.2 Proofs

Proof of Lemma 1. Intermediate value theorem applied to the continuous GFT functions.

Proof of Lemma 2. First, I show there is no concession in equilibrium. Suppose ij concede

in equilibrium. If both sides concede, then one delegate could do better by improving their

demand and this is not an equilibrium. Suppose one side concedes. Consider that side instead

deviating at the demands stage to demand the contract reached. This does not change the

demands by any other delegate. This deviation also does not change the expected profit for

any other concession decision. Therefore since the strategies are Markov, all other concession

decisions are unaffected. Therefore resulting firm profits are unaffected, but the delegate

avoids the concession cost and the demand is strictly dominated. Therefore there is no

concession in equilibrium.

Now I show by contradiction that there is never a subgame agreement reached by a hospi-

tal demanding a strictly lower price than the insurer they negotiate with. By Assumptions 1

and 2, both parties could strictly improve their profits by demanding the contract the other

side demands. Contradiction. Therefore demands are equal in equilibrium of any pair that

13



successfully reaches a contract.

Proof of Lemma 3. I am proceeding assuming there is at least one y1 and y2 such that

y1 + y2 > 1 and:

V H
(
y2p

H
D + (1− y2)p

M
D

)
− V H(pHD) = cH

(
(pMD − pHD)(y1 + y2 − 1)

)
V M

(
y1p

M
D + (1− y1)p

H
D

)
− V M(pMD ) = cM

(
(pMD − pHD)(y1 + y2 − 1)

)
.

Since y1+y2 > 1 and c is increasing for values above 0, the right-hand side of both equations

is positive. Therefore the left-hand side is positive, i.e. y1, y2 < 1.

Now consider more generally the function ŷ1(y2) : [0, 1] → [0, 1] to solve V H
(
y2p

H
D + (1− y2)p

M
D

)
−

V H(pHD) = cH
(
(pMD − pHD)(ŷ1(y2) + y2 − 1)

)
, i.e:

ŷ1(y2) =
(cH)−1

(
V H

(
y2p

H
D + (1− y2)p

M
D

)
− V H(pHD)

)
pMD − pHD

+ 1− y2

As pointed out by Dutta in the differentiable case, ŷ1 is a continuous function, ŷ1(1) = 0,

ŷ1(0) > 1, and ŷ1(y2) decreases strictly faster than y2 since an increase in y2 by a unit

and a decrease in y1 by one unit leaves cH((pMD − pHD)(y1 + y2 − 1)) unchanged but reduces

V H(y2p
H
D + (1− y2)p

M
D ). The function ŷ2(y1) has the same properties.

By the intermediate value theorem, there there is a fixed point to the function ŷ1(ŷ2(y1)).

Since increasing y1 by ε increases ŷ1(ŷ2(y1)) by strictly more than ε, that fixed point is

unique. Since the fixed point (y∗1, y
∗
2) is in (0, 1), it must generate positive left-hand sides so

that y∗1 + y∗2 > 1.

Proof of Lemma 4. This claim is almost exactly Dutta (2012)’s Proposition 3. Suppose the

hospital delegate demands price at least z1p
M
D +(1−z1)p

H
D and the insurer delegate demands

price at most z2p
H
D + (1− z2)p

M
D . Since there is no concession in equilibrium (Lemma 2), it

must be z1 = (1 − z2), so that z1 + z2 = 1. z1 = 1 and z2 = 0 corresponds to the hospital
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getting all of the surplus, whereas z2 = 1 and z1 = 0 corresponds to the insurer getting all

of the surplus.

After appropriate notation changes, the claim is almost in the setup of Dutta (2012).

There is a change to concession costs if both concede, but since that requires bilateral

deviation it is irrelevant to the equilibrium and the same result holds.

Proof of Lemma 5. I proceed for some ij and a sequence of games n satisfying pMD > pHD and

y1 + y2 > 1; the claim is immediate for the other n.

Recall that V H(pMD ) − V H(pHD), V
M(pHD) − V M(pMD ) →n 0 by Assumption 3 and V ′ ≥

εB > 0 by Assumption 1, so that pMD − pHD →n 0.

Recall that y1,(n), y2,(n) are defined as the solution to:

V H
(
y2,(n)p

H
D + (1− y2,(n))p

M
D

)
− V H(pHD) = cH

(
(pMD − pHD)(y1,(n) + y2,(n) − 1)

)
V M

(
y1,(n)p

M
D + (1− y1,(n))p

H
D

)
− V M(pMD ) = cM

(
(pMD − pHD)(y1,(n) + y2,(n) − 1)

)
.

Costs go to zero quickly enough that the infinite right-derivative at zero dominates. The

cost functions must tend to zero because pMD −pHD →n 0 and y1,(n)+y2,(n)−1 is bounded. The

cost functions are also lower-bounded by a function with an infinite right-derivative (Assump-

tion 3). As a result, there is a sequence of ϵn →n 0 such that c
(
(pMD − pHD)(y1,(n) + y2,(n) − 1)

)
>

B(pMD − pHD)(y1,(n)+ y2,(n)− 1)/(2ϵn) for all n large enough and all i, j with y1,(n)+ y2,(n) > 1.

Note that by construction, V H
(
y2,(n)p

H
D + (1− y2,(n))p

M
D

)
−V H(pHD) ≤ B(1−y2,(n))(p

M
D −

pHD) and V M
(
y2,(n)p

H
D + (1− y2,(n))p

M
D

)
− V H(pHD) ≤ B(1− y1,(n))(p

M
D − pHD). As a result:

B(pMD − pHD)(y1,(n) + y2,(n) − 1)/ϵn < B(2− y1,(n) − y2,(n))(p
M
D − pHD)

y1,(n) + y2,(n) − 1 < 2ϵn →n 0.

Since 1 ≤ y1,(n) + y2,(n) ≤ 1 + on(ϵn) for ϵn independent of i, j, this completes the proof.
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